En bref
- Grade universitaire offert : Doctorat en philosophie (Ph.D.)
- Option de statut d’inscription : Temps complet
- Langue d’enseignement : Anglais
- Option d’étude (durée prévue du programme) :
- dans une période de 4 ans
- Unités scolaires : Faculté de génie, Département de génie chimique et biologique.
Description du programme
Le programme de doctorat prépare les candidats à des carrières d’enseignement postsecondaire et/ou de recherche dans le secteur public ou privé. Les étudiants diplômés acquerront une autonomie à poursuivre dans le domaine de la recherche et des habilités de rédaction de publications pertinentes afin de promouvoir le génie chimique à l’échelle internationale.
Principaux domaines de recherche
- le développement des matériaux
- le génie des procédés
- les technologies propres et l’énergie renouvelable;
- le génie biomédical
Autres programmes offerts dans la même discipline ou dans une discipline connexe
- Maîtrise ès sciences appliquées Génie chimique (M.Sc.A.)
- Maîtrise ès sciences appliquées Génie chimique Spécialisation en science, société et politique publique (M.Sc.A.)
- Maîtrise en ingénierie Génie chimique (Ph.D.)
Coût et financement
- Frais reliés aux études :
Le montant estimé des droits universitaires de ce programme est disponible sous la section Financer vos études.
Les étudiants internationaux inscrits à un programme d'études en français peuvent bénéficier d'une exonération partielle des droits de scolarité.
- Pour des renseignements sur les moyens de financer vos études supérieures, veuillez consulter la section Bourses et appui financier.
Notes
- Les programmes sont régis par les règlements généraux en vigueur pour les études supérieures.
- Conformément au règlement de l’Université d’Ottawa, les étudiants ont le droit de rédiger leurs travaux, leur thèse et de répondre aux questions d’examen en français ou en anglais.
Coordonnées du programme
Bureau des études supérieures, Faculté de génie
STE 1024
800 King Edward Ave.
Ottawa ON Canada
K1N 6N5
Tél. : 613-562-5347
Téléc. : 613-562-5129
Courriel : etudesup.genie@uottawa.ca
Pour connaître les renseignements à jour concernant les dates limites, les tests de langues et autres exigences d'admission, consultez la page des exigences particulières.
Pour être admissible, vous devez :
- Être titulaire d’une maitrise en génie chimique (avec thèse ou l’équivalent en termes de publications savantes) avec une moyenne minimale d'admission de B+ (75 %).
Note : Les candidats internationaux doivent vérifier les équivalences d’admission pour le diplôme obtenu dans leur pays de provenance.
- Démontrer une bonne aptitude à la recherche que ce soit dans le contexte d’un projet de quatrième année au baccalauréat ou par la rédaction de rapports de recherche, de résumés ou d’autres documents démontrant des habiletés de recherche.
- Identifier au moins un professeur prêt à diriger votre recherche et votre thèse.
- Il est recommandé de communiquer avec le directeur de thèse dès que possible.
- Pour pouvoir vous inscrire, vous devez faire accepter votre candidature par un directeur de thèse.
- Le nom du professeur est requis lors de la demande d’admission.
Exigences linguistiques
Les candidats doivent comprendre et parler couramment la langue d'enseignement, du programme dans lequel ils veulent s'inscrire. Une preuve de compétence linguistique peut être requise.
Ceux dont la langue maternelle n'est ni le français ni l'anglais doivent fournir une preuve de compétence dans la langue d'enseignement.
Note : Les coûts des tests de compétences linguistiques devront être assumés par le candidat.
Notes
- Les activités de recherche peuvent se dérouler soit en anglais soit en français soit dans les deux langues en fonction de la langue principale du professeur et des membres du groupe.
- Les conditions d'admission décrites ci-dessus représentent des exigences minimales et ne garantissent pas l'admission au programme.
- Les admissions sont régies par les règlements généraux en vigueur pour les études supérieures.
Passage accéléré de la maîtrise au doctorat
Les étudiants inscrits au programme de maîtrise en génie chimique à l’Université d’Ottawa ont la possibilité de passer directement au programme de doctorat sans avoir à rédiger la thèse de maîtrise dans la mesure où les conditions suivantes sont remplies :
- Avoir été inscrits à temps plein au programme de M.Sc.A. pendant au moins un an;
- Réussite de quatre cours d'études supérieures (12 crédits) avec une moyenne d'au moins 80 % (A-);
- Recommandation écrite du directeur de thèse ainsi que du comité des études supérieures;
- Réussite d'au moins 9 crédits en génie chimique.
Notes :
- Les candidats à la maîtrise voulant passer directement au doctorat doivent remplir les conditions précisées par leur programme principal.
- Le passage doit s’effectuer au cours des 16 mois suivant l’inscription à la maîtrise. Une fois inscrits au doctorat, les étudiants doivent répondre à toutes les exigences de ce programme.
Les exigences de ce programme ont été modifiées. Les exigences antérieures peuvent être consultées dans les annuaires 2023-2024.
Doctorat
Les étudiants et étudiantes doivent compléter un minimum de neuf trimestres de recherche à temps plein après le baccalauréat en sciences appliquées (B.Sc.A) et six trimestres de recherche à temps plein après la maîtrise en sciences appliquées (M.Sc.A). Il faut aussi remplir les exigences suivantes :
Code | Title | crédits |
---|---|---|
Cours obligatoires : 1 | ||
CHG 8333 | Research Methodology and Communication | 3 crédits |
6 crédits de cours optionnels au-delà du diplôme de maîtrise en sciences appliquées 2, 3 | 6 crédits | |
Séminaire : | ||
CHG 8101S | Seminar I | 1 crédit |
Examen de synthèse : | ||
CHG 9998 | Examen de synthèse (doctorat) 4 | |
Thèse : | ||
THD 9999 | Thèse de doctorat 5, 6 |
Note(s)
- 1
Le département peut, selon les antécédents du candidat, imposer des cours additionnels.
- 2
À moins d'obtenir l'accord du Département, tous les cours doivent faire partie du programme de doctorat en génie chimique.
- 3
Les étudiants d’études supérieures en génie chimique qui ont terminé leur M.A.Sc. à l'Université d'Ottawa, ou qui sont admissibles au programme accéléré, seront exemptés d'un maximum de 9 crédits de cours optionnels requis pour ce programme, à la discrétion du Département et déterminé lors de l'admission.
- 4
Un examen de synthèse oral et écrit doit être réussi dans les 18 mois pour pouvoir poursuivre la recherche.
- 5
L’étudiant est responsable de s’assurer de rencontrer les exigences relatives à la thèse.
- 6
La thèse inclut un examen oral final portant sur la thèse. Les étudiants peuvent soumettre leur thèse sous la forme traditionnelle d'une monographie ou sous la forme d'une série d'articles devant être publiés dans des revues savantes.
Exigences minimales
La note de passage dans tous les cours est de B.
Les étudiants qui échouent six crédits, la proposition de thèse, l’examen de synthèse, la thèse ou dont le rapport de progrès est jugé insatisfaisant doivent se retirer du programme.
Passage accéléré de la maîtrise au doctorat
Le passage doit avoir lieu dans les seize mois qui suivent l’inscription initiale à la maîtrise. Suite au passage, il faut remplir toutes les exigences du doctorat : réussite d’un nombre minimal de 21 crédits de cours au niveau supérieur (M.Sc.A.+ Ph.D.) et du séminaire CHG 8102S; réussite d’un examen de synthèse dans les douze mois qui suivent le passage; et la thèse.
La recherche à l’Université d’Ottawa
Située au cœur de la capitale du Canada, à quelques pas de la colline du Parlement, l’Université d’Ottawa se classe parmi les 10 meilleures universités de recherche au Canada. Notre recherche est fondée sur l’excellence, la pertinence et l’impact et s'effectue dans un esprit d'équité, de diversité et d'inclusion.
Notre communauté de recherche se développe dans quatre axes stratégiques :
- Créer un environnement durable,
- Promouvoir des sociétés justes,
- Façonner le monde numérique
- Favoriser santé et bien-être tout au long de la vie.
Qu'il s'agisse de faire progresser les solutions en matière de soins de santé ou de relever des défis mondiaux comme les changements climatiques, les chercheurs de l'Université d'Ottawa sont à l'avant-garde de l'innovation et apportent des contributions importantes à la société et au-delà.
La recherche à la Faculté de génie
Principaux domaines de recherche :
- Génie chimique et biologique
- Génie civil
- Science informatique et génie électrique
- Génie mécanique
Pour d’autres informations, veuillez consulter la liste des membres du corps professoral et leurs domaines de recherche sur Uniweb.
IMPORTANT : Les candidats et les étudiants à la recherche de professeurs pour superviser leur thèse ou leur projet de recherche peuvent aussi consulter le site Web de la faculté ou du département du programme de leur choix. La plateforme Uniweb n’est pas représentative de l’ensemble du corps professoral autorisé à diriger des projets de recherche à l’Université d’Ottawa.
Tous les cours décrits ci-après ne sont pas nécessairement offerts chaque année. La présence aux cours est obligatoire.
CHG 6000 Rapport en génie chimique / Chemical Engineering Report (6 crédits / 6 units)
Volet / Course Component: Recherche / Research
CHG 8101S Seminar I
Oral presentation of selected topics and research papers. Attendance at all seminars is compulsory for MASc students.
Volet / Course Component: Séminaire / Seminar
CHG 8102S Seminar II
Oral presentation of selected topics and research papers. Attendance at all seminars is compulsory for PhD students.
Volet / Course Component: Séminaire / Seminar
CHG 8113 Organic Electronics (3 units)
Ever wondered how cellphone displays work? Does the thought of tattoos that detect your sugar levels or roll-up solar panels interest you? Then you might want to learn about organic electronics. In this course students will learn the design, the fabrication and the operation of emerging printed electronics, flexible electronics and organic electronic technologies such as organic photovoltaic (OPV) devices, organic light emitting diodes (OLEDs), organic thin film transistors (OTFTs) and printed sensors. The course will cover elements of applied organic/polymer chemistry, materials engineering, physical chemistry and applied electronics. Students will touch on topics including molecular-property relationships, thin film processing, charge transport through carbon-based materials, photoexcitation of organic molecules, polymer processing, and how it all applies to emerging thin film technologies.
Course Component: Lecture
CHG 8115 Heat Transfer I (3 units)
The general law of heat conduction. Steady and unsteady heat conduction in solids with or without internal heat sources. Radiant heat transmission.
Course Component: Lecture
CHG 8116 Advanced Transport Phenomena (3 units)
Advanced study of momentum, heat and mass transfer relevant to chemical engineering and also to areas such as environmental engineering, medicine and other scientific disciplines. Review of the analogy between mass, momentum and thermal transport and, in particular, of the physical principles and mathematical foundations required for the analysis of fluid flow, heat transfer and mass transfer, and of the advanced methods for the analysis of transport problems. Main emphasis on formulation of a given physical problem in terms of appropriate conservation equations, and obtaining an understanding of the associated physical phenomena. Use of many chemical engineering applications to illustrate the various principles.
Course Component: Lecture
CHG 8121 Synthetic Membranes in Biomedical Engineering (3 units)
Medical applications of synthetic membranes hemodialysis, oxygenation, hemofiltration, apheresis and plasma exchange, biofunctional membranes, biosensors, drug delivery systems and microencapsulation. Emphasis on the types and classes of membranes available, relationship between structure and properties of membranes, and other variables, techniques for fabricating membranes, and special issues involved in the design and manufacture of synthetic membranes for medical use.
Course Component: Lecture
CHG 8123 Advanced Chemical Engineering Thermodynamics (3 units)
Presentation of the fundamentals and the contemporary research developments in chemical engineering thermodynamics. Thermodynamic properties and formulations. Properties of fluids. Stability of thermodynamic systems. Criteria of equilibrium. Evaluation of thermodynamic properties. Mathematical methods and data handling.
Course Component: Lecture
CHG 8132 Adsorption Separation Processes (3 units)
Discussion of different microporous materials and molecular sieves as adsorbents. Adsorption equilibrium and adsorption kinetics. Equilibrium adsorption of single fluids and mixtures. Diffusion in porous media and rate processes in adsorbers. Adsorber dynamics: bed profiles and breakthrough curves. Cyclic fluid separation processes. Pressure swing adsorption. Examples of commercial separation applications. This course is equivalent to ENVJ 5105 at Carleton University.
Course Component: Lecture
CHG 8157 Strategies for Engineering Process Analysis (3 units)
Statistical experimental design and analysis techniques for industrial and laboratory investigations are presented. Topics include: the nature and analysis of process variation, comparisons of two or more processes, empirical modelling of processes, applications of factorial and fractional factorial designs, mixture designs, response surface methodologies and empirical optimization techniques.
Course Component: Lecture
CHG 8161 Advanced Chemical Reaction Engineering (3 units)
Kinetics of chemical reactions and its application to chemical engineering problems. Rate expressions and heterogeneous kinetics. Preparation and evaluation of catalyst activity. Promoters and poisons. Physical properties and transfer of mass and energy in porous catalysts. Interpretation of kinetic data and determination of mechanisms of catalyzed reactions.
Course Component: Lecture
CHG 8181 Advanced Biochemical Engineering (3 units)
Kinetics of bioreactions, growth and product formation. Batch and continuous bioprocesses. Mass and heat transfer in bioreactors. Novel bioreactor design. Industrial microbiology. Animal and plant cell culture. Downstream processing. Biosensors, biological waste-water treatment, biocorrosion, bioleaching. Nitrogen fixation. Genetic engineering. This course is equivalent to ENVJ 5501 at Carleton University.
Course Component: Lecture
CHG 8187 Introduction to Polymer Reaction Engineering (3 units)
Introduction to principles governing polymerization reactions and the resultant physical properties of polymers. Theory and experimental methods for the characterization of polymers. Mechanism and kinetics of polymerization reactions with emphasis on chain-growth polymerizations. Mathematical modelling and polymer reactor design.
Course Component: Lecture
CHG 8188 Polymer Properties and Characterization (3 units)
Polymer properties are described and discussed in the context of their nature, source and means of measurement. Chemical and microstructural properties; physical states and transitions; thermal properties; mechanical properties and viscoelasticity models; degradation and stability; surface, electrical and optical properties, polymer additives; structure-property relationships.
Course Component: Lecture
CHG 8191 Selected Topics Chemical Engineering (3 units)
Selected Topics in Chemical Engineering
Course Component: Lecture
CHG 8192 Membranes in Clean Processes (3 units)
Course emphasizing the use and development of membrane separations as clean and cleaning technologies. Applications of reverse osmosis, ultrafiltration, vapour permeation and pervaporation to the treatment of industrial process and waste streams. Discussion of the fundamentals underlying each separation process. Nanostructured membrane materials. Membrane fouling models, foulant-membrane material interactions, solvent resistant membranes, aqueous and non-aqueous separations.
Course Component: Lecture
CHG 8194 Membrane Liquid Separation Processes and Materials (3 units)
Advanced topics of membrane separations including reverse osmosis, ultrafiltration, non-aqueous liquid separation, and membrane applications in biotechnology. Physical chemical criteria for separations, membrane materials, and membrane casting techniques. Basic transport equations for single and mixed solute systems. Prediction of membrane performance. Process design, specification, and analysis applications. Problem solving in membrane transport, membrane design, and membrane process design.
Course Component: Lecture
CHG 8195 Advanced Numerical Methods in Chemical and Biological Engineering (3 units)
Survey course of numerical methods for solving linear and non-linear ordinary and partial differential equations. Techniques reviewed include Runge-Kutta and predictor-corrector methods, shooting techniques, control volume discretization methods and finite elements. Example problems from the field of transport phenomena. This course is equivalent to ENVJ 5505 at Carleton University.
Course Component: Lecture
CHG 8196 Interfacial Phenomena in Engineering (3 units)
Interfacial tension and interfacial free energy; contact angles; spreading of liquids; wetting of surfaces; experimental techniques. Interfacial tension of mixtures; Gibbs equation; absorbed and insoluble monolayers; properties of monolayers and films. Electrical phenomena at interfaces; the electrical double layer; zeta-potential; electrokinetic phenomena (electrophoresis, electro-osmosis, streaming potential); surface conductance. Dispersed systems; formation and practical uses of emulsions; spontaneous emulsification; flocculation. This course is equivalent to ENVJ 5507 at Carleton University.
Course Component: Lecture
CHG 8198 Membrane Gas Separation Processes (3 units)
Familiarization with principles of membrane technology and engineering aspects of membrane separation processes, with emphasis on gas separation. Overview of membrane types and materials, mechanisms of gas transport in membranes, and applications. Zero stage-cut analysis and membrane characterization methods and multistage membrane module design.
Course Component: Lecture
CHG 8300 Electrochemical Engineering (3 units)
Basic principles and laws of applied electrochemistry. Electrochemical thermodynamics. Electrode kinetics and electrochemical double layer. Electrocatalysis for fuel cells and water electrolysis. Transport phenomena in electrochemical engineering. Electrochemical reaction engineering. Examples of industrial processes: Chloralkali-electrolysis, water electrolysis, electrowinning of Nickel, Zinc, Aluminum, organic electro-synthesis. Energy conversion and storage technology: fuel cells, electrochemical capacitors and batteries.
Course Component: Lecture
CHG 8301 Renewable Fuels (3 units)
The production and sustainability of renewable fuels: Study the various generations and types of renewable fuels. Detailed look at the processes involved in transforming renewable feedstocks into useful fuels. Evaluation of the chemical and physical exergy of substances and process streams. Exergetic efficiency of process flowsheets. Perform well to wheel energetic and exergetic life cycle analyses of fossil and biofuels. Evaluate the environmental performance of renewable fuels.
Course Component: Lecture
CHG 8302 Oil and Gas Processing (3 units)
Physical and chemical properties of hydrocarbons and their estimation methods. Typical technologies, processes, and unit operations used in the characterization and processing of natural gas, crude oils, and Canadian bitumen.
Course Component: Lecture
CHG 8303 Tissue Engineering and Regenerative Medicine Principles (3 units)
The principles applied in the fields of tissue engineering and regenerative medicine to develop prospective therapeutic solution for a range of injuries and pathologies. A general discussion on the tissue engineering paradigm and building blocks (cells, biomaterials and bioactive cues) employed to engineer tissues. A range of tissue fabrication strategies using specific tissue/organ systems as examples. How engineering concepts, including bioreactor design, are exploited to drive innovation in the field. Additional aspects of regenerative medicine.
Course Component: Lecture
CHG 8304 Biomaterials: Principles and Applications (3 units)
Classes of biomaterials, including metals, ceramics, polymers and composite materials; properties of biomaterials, characterizations of biomaterials, degradable biomaterials, modifications of biomaterials, and host responses to biomaterials. Applications of biomaterials, particularly drug delivery systems, and other applications of biomaterials in tissue engineering. Regulations on the use of biomaterials and special considerations on the use of biomaterial based implantable devices.
Course Component: Lecture
CHG 8305 Particulate and Multiphase Flow (3 units)
The principal elements in the design and scale-up of various commercially important particulates and multiphase systems such as fixed beds, spouted beds, bubble columns and fluidized beds. Topics include flow regimes, hydrodynamics, heat and mass transfer, mixing, interfacial phenomena, chemical reaction and instrumentation.
Course Component: Lecture
CHG 8306 Biopharmaceutics and Fermentation (3 units)
Biopharmaceutics: General concepts and new developments in biopharmaceutics. Antibiotics and alternatives to antibiotics, antibodies, vaccines, microRNA, gene therapeutics and viral therapeutics. Fermentation and cell culture: cell growth kinetics; operation modes; expression of recombinant protein in bacteria, yeast, plant cells, insect cells, and mammalian cells. Bioseparation: solids/liquid separation (e.g., filtration, centrifugation, precipitation). Cell disruption; product recovery (distillation, membrane separation, ion exchange, affinity adsorption, solvent extraction, aqueous extraction, crystallization); concentration and drying (thin film evaporator, spray drying, frozen drying).
Course Component: Lecture
CHG 8333 Research Methodology and Communication (3 units)
Tools and principles for efficient and proficient scientific communication and research project management. Best practices for preparing and delivering oral presentations to various audiences, and writing scientific papers, thesis and reports. Research methodology. Research project planning. Design of experiments with long-term and short-term objectives.
Course Component: Lecture
CHG 9998 Examen de synthèse (doctorat) / Comprehensive Examination (Ph.D.)
Volet / Course Component: Recherche / Research