MASTER OF SCIENCE CHEMISTRY

Summary
- Degree offered: Master of Science (MSc)
- Registration status options: Full-time; Part-time
- Language of instruction:
 - French
 - English

Note: Most of the courses in this program are offered in English.

- Program options (expected duration of the program):
 - with thesis (6 full-time terms; 24 consecutive months)
 - with thesis, accelerated stream (3 full-time terms; 12 consecutive months)
- Academic units: Faculty of Science (http://science.uottawa.ca/), Department of Chemistry and Biomolecular Sciences (http://science.uottawa.ca/chemistry/), Ottawa-Carleton Chemistry Institute.

Program Description

Ottawa-Carleton Joint Program

Established in 1981, the Ottawa-Carleton Chemistry Institute (OCCI) combines the research strengths of the University of Ottawa and Carleton University. The institute offers graduate programs leading to the master's (MSc) and doctoral (PhD) degrees in Chemistry.

Research facilities are shared between the two campuses. Students have access to the professors, courses and facilities at both universities; however, they must enroll at the “home university” of the thesis supervisor.

The Institute is a participating unit in the collaborative program in chemical and environmental toxicology at the master's and doctoral levels.

Main Areas of Research

Members of the Institute are engaged in the following research fields:

- Inorganic chemistry
- Organic chemistry
- Theoretical chemistry
- Biological chemistry
- Analytical chemistry
- Physical chemistry

Other Programs Offered Within the Same Discipline or in a Related Area

- Master of Science Chemistry Specialization in Science, Society and Policy (MSc)
- Master of Science Chemistry Specialization in Chemical and Environmental Toxicology (MSc)
- Doctorate in Philosophy Chemistry (PhD)
- Doctorate in Philosophy Chemistry Specialization in Chemical and Environmental Toxicology (PhD)

Fees and Funding

- Program fees:
 - The estimated amount for university fees (https://www.uottawa.ca/university-fees/) associated with this program are available under the section Finance your studies (http://www.uottawa.ca/graduate-studies/programs-admission/finance-studies/).
 - International students enrolled in a French-language program of study may be eligible for a differential tuition fee exemption (https://www.uottawa.ca/university-fees/differential-tuition-fee-exemption/).

- To learn about possibilities for financing your graduate studies, consult the Awards and financial support (https://www.uottawa.ca/graduate-studies/students/awards/) section.

Notes

- Programs are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations/) in effect for graduate studies at each of the two universities.
- In accordance with the University of Ottawa regulation, students have the right to complete their assignments, examinations, research papers, and theses in French or in English.
- Research activities can be conducted either in English, French or both, depending on the language used by the professor and the members of his or her research group.
Program Contact Information
Graduate Studies Office, Faculty of Science (https://science.uottawa.ca/en/faculty-services/graduate-studies/)
30 Marie-Curie Street, Gendron Hall, Room 181
Ottawa, Ontario, Canada
K1N 6N5
Tel.: 613-562-5800 x3145
Email: gradsci@uOttawa.ca

Twitter | Faculty of Science (https://twitter.com/uOttawaScience/?lang=en)
Facebook | Faculty of Science (https://www.facebook.com/uOttawaScience/)

Admission Requirements
For the most accurate and up to date information on application deadlines, language tests and other admission requirements, please visit the specific requirements (https://www.uottawa.ca/graduate-studies/programs-admission/apply/specific-requirements/) webpage.

To be eligible, candidates must:
• Have a bachelor's degree with a specialization, or a major in Chemistry (or equivalent) with a minimum admission average of 75% (B+).

Note: International candidates must check the admission equivalencies (https://www.uottawa.ca/graduate-studies/international/study-uottawa/admission-equivalencies/) for the diploma they received in their country of origin.

• Demonstrate high academic achievement, as indicated in official transcripts, research reports, abstracts or any other documents demonstrating research skills.

• Meet the funding requirements.

Note: International students must provide proof of financial support: i.e., a stipend provided by a supervisor as well as a combination of awards and/or trust funds.

• Identify at least one professor who is willing to supervise your research and thesis.
• We recommend that you contact potential thesis supervisors as soon as possible.
• To register, you need to have been accepted by a thesis supervisor.
• The supervisor’s name is required at the time of application.
• The choice of supervisor will determine the primary campus location of the student. It will also determine which university awards the degree.

• Applicants to the Accelerated Stream of the MSc must meet the following additional requirements:
 • Have to be an undergraduate student admitted to the University of Ottawa
 • Have an admission average of 7.0 (B+)
 • Have been enrolled in CHM 4010 (or equivalent) the year prior the entry to the MSc
 • Have a thesis supervisor who has agreed to continue to direct their research at the MSc level
 • Have identified the CHM 4000 or 5000 level course to complete with a minimal grade of A- that is to count towards the MSc

Language Requirements
Applicants must be able to understand and fluently speak the language of instruction (French or English) in the program to which they are applying. Proof of linguistic proficiency may be required.

Applicants whose first language is neither French nor English must provide proof of proficiency in the language of instruction.

Note: Candidates are responsible for any fees associated with the language tests.

Notes
• The admission requirements listed above are minimum requirements and do not guarantee admission to the program.
• Admissions are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations/) in effect for graduate studies and the general regulations of the Ottawa-Carleton Institute for Chemistry (OCIC)

Program Requirements
Master’s with Thesis
Requirements for this program have been modified. Please consult the 2018-2019 calendars (https://catalogue.uottawa.ca/en/archives/) for the previous requirements.

Students must meet the following requirements:

Compulsory Courses:
6 optional course units in chemistry (CHM) at the graduate level 1, 2

Seminar:
CHM 8256 Seminar I 3 1 Unit

Thesis:
THM 7999 Master's Thesis 4, 5

Notes
The Faculty of Science, through its strategic use of infrastructure programs, hosts world-class Core Facilities and is at the leading edge for the study of Catalysis, Experimental and Computational Chemistry, Environmental Toxins, Nuclear Magnetic Resonance, Isotope Analysis, Molecular Biology and Genomics, X-Ray Spectrometry/Diffraclometry, Geochemistry, Mass Spectrometry, Physiology and Genetics of Aquatic Organisms, and Photonics. The Faculty is also associated with the Fields Institute for research in mathematical science and the Centre de recherche mathématiques (CRM) at the Université de Montréal, providing a unique setting for mathematical research.

For more information, refer to the list of faculty members and their research fields on Uniweb.

IMPORTANT: Candidates and students looking for professors to supervise their thesis or research project can also consult the website of the faculty or department (https://www.uottawa.ca/graduate-studies/students/academic-unit-contact-information/) of their program of choice. Uniweb does not list all professors authorized to supervise research projects at the University of Ottawa.

Courses

Not all of the listed courses are given each year. The course is offered in the language in which it is described.

A 3-unit course at the University of Ottawa is equivalent to a 0.5-unit course at Carleton University.

CHM 5105 Radiochemistry (3 units)
A study of nuclear stability and decay; chemical studies of nuclear phenomena. Application of radioactivity.

Course Component: Lecture

Permission of the Department is required.

CHM 5108 Surface Chemistry and Nanostructures (3 units)
Surface structure, thermodynamics and kinetics, specifically regarding adsorption/desorption and high vacuum models. Nanoscale structures and their formation, reactivity and characterization. Thin films, carbon nanotubes, self-assembled monolayers and supramolecular aggregates. This course is equivalent to CHEM 5108 at Carleton University.

Course Component: Lecture

CHM 5109 Advanced Applications in Mass Spectrometry (3 units)
Detailed breakdown of the physical, electrical and chemical operation of mass spectrometers. Applications in MS ranging from the analysis of small molecules to large biological macromolecules. Descriptions of the use of mass spectrometry in industry as well as commercial opportunities in the field. This course is equivalent to CHEM 5109 at Carleton University.

Course Component: Lecture

CHM 5206 Physical Methods of Nanotechnology (3 units)
An overview of methods used in nanotechnology. Principles of scanning probe techniques ranging from surface physics to biology. State of the art methods to create nanostructures for future applications in areas such as nanolithography, nanoelectronics, nano-optics, data storage and bio-analytical nanosystems. This course is equivalent to CHEM 5206 at Carleton University.

Course Component: Lecture
CHM 5207 Macromolecular Nanotechnology (1.5 unit)
Fundamentals of synthetic macromolecules related to nanoscale phenomena. Challenges and opportunities associated with polymers on the nanoscale. Topics include molecular recognition, self-assembled nanostructures, functional nanomaterials, amphilic architectures, nanocomposites, and nanomachines. Applications to sensing, drug delivery, and polymer based devices. This course is equivalent to CHEM 5207 at Carleton University.
Course Component: Lecture

CHM 5208 Bio Macromolecular Nanotechnology (1.5 unit)
Fundamentals of biological macromolecules related to nanoscale phenomena. Challenges and opportunities associated with natural polymers on the nanoscale. Topics include molecular recognition, self-assembled nanostructures, scaffolds and templates, functional nanomaterials, amphophilic architectures, nanocomposites, and nanomachines. Applications to sensing, biomaterials, drug delivery, and devices. This course is equivalent to CHEM 5208 at Carleton University.
Course Component: Lecture

CHM 5506 Environmental Chemistry and Toxicology (1.5 crédit)
Overview of environmental chemistry and toxicology principles including chemical sources, fate, and effects in the environment. Examining organic reactions occurring in abiotic environments and biological systems, and study aspects of toxicant disposition and biotransformation. Emphasis on contemporary problems in human health and the environment. This course is equivalent to CHEM 5506 at Carleton University
Volet : Cours magistral

CHM 8104 Scientific Data Processing and Evaluation (3 units)
Optimization of scientific measurements, calibration, uni-variate and multi-variate analysis of scientific data, 'intelligent' spreadsheets for scientific data processing and presentation, noise reduction using spreadsheets, correction for signal drifts; examples from chemistry, spectroscopy and other scientific disciplines. This course is equivalent to CHEM 5904 at Carleton University.
Course Component: Lecture

CHM 8126 Bioorganic Chemistry (3 units)
Overview of recent developments in the mechanistic understanding of selected enzyme-catalyzed reactions. Topics include Cytochrome P450, methane monooxygenase, biotin and lipoic acid biosynthesis, methyl transfer, Vitamin B12, lipooxygenase, prostaglandin synthase; etc. Emphasis will be placed on biotransformations which are relatively poorly understood from a mechanistic point of view. This course is equivalent to CHEM 5303 at Carleton University.
Course Component: Lecture

CHM 8134 Spectroscopy for Organic Chemists (3 units)
Analysis of proton NMR spectra. Fourier transform 13C NMR, strategies for structure elucidation, relaxation times, two-dimensional NMR. Aspects of mass spectrometry. This course is equivalent to CHEM 5407 at Carleton University.
Course Component: Lecture

CHM 8150 Special Topics in Molecular Spectroscopy (3 units)
Topics of current interest in molecular spectroscopy. In past years, the following areas have been covered: electronic spectra of diatomic and triatomic molecules and their interpretation using molecular orbital diagrams; Raman and resonance Raman spectroscopy; symmetry aspects of vibrational and electronic levels of ions and molecules in solids in the presence of weak and strong resonant laser radiation. This course is equivalent to CHEM 5009 at Carleton University.
Course Component: Lecture

CHM 8158 Directed Special Studies (3 units)
Under unusual circumstances and with the recommendation of the research supervisor, it is possible to engage in a directed study on a topic of particular value to the student. This may also be used for unit if there are insufficient course offerings in a particular field of chemistry. This course is equivalent to CHEM 5900 at Carleton University.
Course Component: Lecture

CHM 8164 Organic Polymer Chemistry (3 units)
Basic principles of industrial and synthetic polymers. Polymerization and polymer characterization. Selected topics to cover some important polymers with emphasis on the synthesis, commodity plastics, engineering theroplastics and specialty polymers. Students should have a basic knowledge of organic reaction mechanisms and stereochemistry. This course is equivalent to CHEM 5406 at Carleton University.
Course Component: Lecture
Prerequisites: CHM 3120, CHM 4120, CHM 4125, equivalent. or A basic knowledge of organic reaction mechanisms and stereochemistry.

CHM 8165 Advanced Protein Engineering (3 units)
Overview of recent developments in the conception and design of proteins with novel structures and functions. Topics include rational and computational design, ancestral protein reconstruction, and directed evolution of proteins.
Course Component: Lecture

CHM 8173 Introduction to Molecular Simulation and Statistical Mechanics (Part A) (1.5 unit)
A practical introduction to modern molecular simulation techniques widely used as tools in chemical research. Classical molecular dynamics and Monte Carlo simulations methods are discussed. The necessary statistical mechanics required to understand and properly interpret the molecular simulations and link the results to measured bulk properties are introduced. An introduction to modern scientific computing environments and the Linux operating system is also provided. This course is equivalent to CHEM 5114 at Carleton University.
Course Component: Lecture

CHM 8174 Stereoselective Synthesis (1.5 unit)
Fundamentals of stereoselective synthesis and catalysis, including conformational analysis, substrate and catalyst control. Includes the use of allylic, chiral auxiliaries, directed reactions and chiral catalysts. This course is equivalent to CHEM 5113 at Carleton University.
Course Component: Lecture

CHM 8175 Introduction to Molecular Simulation and Statistical Mechanics (Part B) (1.5 unit)
A practical introduction to modern molecular simulation techniques widely used as tools in chemical research. Classical molecular dynamics and Monte Carlo simulations methods are discussed. The necessary statistical mechanics required to understand and properly interpret the molecular simulations and link the results to measured bulk properties are introduced. An introduction to modern scientific computing environments and the Linux operating system is also provided. This course is equivalent to CHEM 5115 at Carleton University.
Course Component: Lecture
CHM 8176 Chemistry Education and Chemistry Education Research (1.5 unit)
Overview of key areas of chemistry education, including theories of learning, aligning intended outcomes with course activities and assessment, and troublesome areas of learning and teaching in chemistry. Key educational research areas are addressed, including types of evidence, research methods, and central publications. This course is equivalent to CHEM 5110 at Carleton University.
Course Component: Lecture

CHM 8180 Directed Special Studies (1.5 unit)
Under unusual circumstances and with the recommendation of the research supervisor, it is possible to engage in a directing study on a topic of particular value to the student. This may also be used for unit if there are insufficient course offerings in a particular field of chemistry. This course is equivalent to CHEM 5900 at Carleton University.
Course Component: Lecture

CHM 8181 Chemical Physics of Electron-Molecule Collisions (3 units)
Basic classical scattering theory and quantum mechanical scattering theory. Experimental aspects, such as electron optics, electron gun fundamentals, energy analyzers and electron detectors. Applications to the understanding of the chemistry of materials. This course is equivalent to CHEM 5101 at Carleton University.
Course Component: Lecture

CHM 8256 Seminar I (1 unit)
A seminar course in which students are required to present a seminar on a topic not related to their research project. In addition, students are required to attend the seminar of their fellow classmates and actively participate in the discussion following the seminar. This course is equivalent to CHEM 5801 at Carleton University.
Course Component: Seminar

CHM 8257 Seminar II (1 unit)
A seminar course in which students are required to present a seminar on their Ph.D research project. In addition, students are required to attend the seminars of the fellow classmates and departmental seminars, and actively participate in the discussion. This course is equivalent to CHEM 5802 at Carleton University.
Course Component: Seminar

CHM 8301 Analytical Mass Spectrometry (1.5 unit)
The principles of ion sources and mass spectrometers will be described, together with their applications to problems in chemistry and biochemistry. Introduction to the chemistry gaseous ions. Ion optics. Special emphasis on interpreting mass spectra. This course is equivalent to CHEM 5801 at Carleton University.
Course Component: Lecture

CHM 8302 Advanced Topics in Inorganic Chemistry (1.5 unit)
Topics of current interest in inorganic chemistry. Variable content from year to year. This course is equivalent to CHEM 5901 at Carleton University.
Course Component: Lecture

CHM 8304 Advanced Topics in Organic Chemistry (1.5 unit)
Topics of current interest in organic chemistry. Variable content from year to year. This course is equivalent to CHEM 5901 at Carleton University.
Course Component: Lecture

CHM 8308 Multinuclear Magnetic Resonance Spectroscopy (1.5 unit)
Principles of Nuclear Magnetic Resonance (NMR). Study of NMR parameters: chemical shift, spin-spin coupling, electric quadrupole coupling, spin-spin and spin-lattice relaxation rates. NMR and the periodic table. Dynamic NMR. Applications in chemistry and biochemistry. Fourier Transform technique. Pulse sequences. Basic principles and applications of two-dimensional NMR. This course is equivalent to CHEM 5002 at Carleton University.
Course Component: Lecture

CHM 8311 Advanced and Applied Photochemistry (1.5 unit)
Basic principles of photochemistry including selection rules, energy transfer processes and the properties of excited state reactions. Lasers and their applications to measurements of the dynamics of elementary reactions. This course is equivalent to CHEM 5007 at Carleton University.
Course Component: Lecture
Prerequisite: CHM 8310

CHM 8313 Surface Chemistry Aspects of Electrochemical Science (1.5 unit)
Introduction to electrode processes and electrolysis. Potential differences at interfaces. Characterization of the electrical double layer. Dipole orientation effects, charge-transfer in adsorbed layers, electrochemical origins of surface science concepts. Theory of electron transfer, electrode kinetics, electrocatalysis. This course is equivalent to CHEM 5504 at Carleton University.
Course Component: Lecture

CHM 8314 Surface Chemistry Aspects of Electrochemical Science (1.5 unit)
Introduction to advanced in-situ techniques in electrochemistry. Scanning probe microscopy, Raman, infrared and laser spectroscopy. This course is equivalent to CHEM 5505 at Carleton University.
Course Component: Lecture
Prerequisites: CHM 8314, CHM 8714

CHM 8315 Electrochemical Surface Science (1.5 unit)
Introduction to advanced in-situ techniques in electrochemistry. Scanning probe microscopy, Raman, infrared and laser spectroscopy. This course is equivalent to CHEM 5505 at Carleton University.
Course Component: Lecture

CHM 8316 Surface Chemistry (1.5 unit)
Adsorption phenomena and isotherms, surface areas of solids. Modern techniques in surface chemistry and surface science such as electron diffraction, Auger electron spectroscopy, photoelectron spectroscopy, electron energy loss spectroscopy, infrared and Raman spectroscopy. Current new techniques. This course is equivalent to CHEM 5506 at Carleton University.
Course Component: Lecture
CHEM 3819 Total Syntheses (1.5 unit)
Discussion on philosophy and strategy development for complex syntheses, along with modern reagents and reactions that have shortened classical routes and lead to more efficient and atom economy. This course is equivalent to CHEM 5403 at Carleton University.
Course Component: Lecture

CHEM 3820 Pericyclic and Stereoelectronic Effects (1.5 unit)
Pericyclic reactions, facial selectivity, stereoelectronic effects in carbohydrates and related acetal cleavage. Applications to complex synthetic problems. This course is equivalent to CHEM 5405 at Carleton University.
Course Component: Lecture

CHEM 3821 Solid State Chemistry (1.5 unit)
Thermodynamic and kinetic aspects of solid state synthesis. Characterization of solids. Chemical and physical properties of solids that may include aspects of intercalation reactions, ionic conductors, glasses, electronic, magnetic optical and physical/mechanical properties. This course is equivalent to CHEM 5201 at Carleton University.
Course Component: Lecture

CHEM 3822 Topics in Coordination Chemistry (1.5 unit)
Brief introduction to basic concepts in coordination chemistry. Topics to include the following: carbon dioxide fixation, dinitrogen fixation, activation, olefin metathesis, nature of the M-M bond. This course is equivalent to CHEM 5203 at Carleton University.
Course Component: Lecture

CHEM 3823 Quantum Mechanical Methods - Theory (1.5 unit)
Examination of the theory behind quantum mechanical methods (HF, MP2, CI, DFT). Semi-empirical. This course is equivalent to CHEM 5600 at Carleton University.
Course Component: Lecture

CHEM 3824 Quantum Mechanical Methods - Applications (1.5 unit)
Practical applications of methods taught in CHM 3823 such as thermochemistry, reaction pathway moeling, structure predictions. This course is equivalent to CHEM 5601 at Carleton University.
Course Component: Lecture
Prerequisite: CHM 8323 or CHM 8723

CHEM 3825 Solid State Nmr Spectroscopy (1.5 unit)
Brief introduction to solid state NMR spectroscopy. Topics include dipolar coupling interactions, chemical shielding anisotropy, the quadrupolar interaction and averaging techniques such as magic angle spinning. This course is equivalent to CHEM 5003 at Carleton University.
Course Component: Lecture

CHEM 3826 Nmr Spectroscopy (1.5 unit)
Advanced NMR techniques for both proton and carbon spectra, various decoupling and related experiments. Interpretation of NOEY, COSY and related data. This course is equivalent to CHEM 5004 at Carleton University.
Course Component: Lecture

CHEM 3827 Physical Organic Chemistry (1.5 unit)
Transition state theory, experimental kinetics and thermodynamics, isotope effects, Linear Free Energy Relationships (LFERs), catalysis and Reaction Profile Kinetic Analysis (RPKA). This course is equivalent to CHEM 5005 at Carleton University
Course Component: Lecture

CHEM 3828 Applications of Organometallic Chemistry to Synthesis (1.5 unit)
Study of organometallic methods, many of which have become catalytic and involve metals such as Cu, Pd, Pt, Mo, Cr, Ru. Various applications to be discussed including Stille coupling, Heck reaction, ring closing metathesis. This course is equivalent to CHEM 5401 at Carleton University.
Course Component: Lecture

CHEM 3829 Medicinal Chemistry (1.5 unit)
Preparation of drugs, their mode of action, their use in treating of disease. Evolution of medicine due to chemistry. Discussion of metabolic pathways and their modification to control and/or circumvent disease. This course is equivalent to CHEM 5402 at Carleton University.
Course Component: Lecture

CHEM 3830 Heterocyclic Chemistry (1.5 unit)
Properties of heterocycles. Synthesis and reactivity of heterocyclic systems, with examples relevant to the synthesis of pharmaceuticals and natural products. Includes metal-catalysed reactions. This course is equivalent to CHEM 5120 at Carleton University.
Course Component: Lecture

CHEM 3831 Physical Chemistry of Biological Macromolecules (1.5 unit)
Focus on how the application of physical techniques, normally applied to small molecules, can be used to study macromolecular structure and function of DNA and proteins. Examples of applications to include: kinetics, electrochemistry, equilibria phenomena (thermodynamics). This course is equivalent to CHEM 5300 at Carleton University.
Course Component: Lecture

CHEM 3832 Electrochemical Phenomena in Biological Systems (1.5 unit)
Description of theory accounting for the generation of membrane potentials. Application to the generation of nerve impulses. This course is equivalent to CHEM 5301 at Carleton University.
Course Component: Lecture

CHEM 3833 Surface Phenomena in Biological Systems (1.5 unit)
Description of theory of surface tension phenomena in aqueous systems. Discussion of effects of cell and macromolecular structures in biological systems. This course is equivalent to CHEM 5302 at Carleton University.
Course Component: Lecture

CHEM 3834 Novel Organic and Inorganic Molecules and Radicals (1.5 unit)
Topics to include neutralization-reionization techniques as well as flash pyrolysis and matrix isolation studies. This course is equivalent to CHEM 5009 at Carleton University.
Course Component: Lecture

CHEM 3835 Non-Equilibrium Kinetics (1.5 unit)
Gas phase chemical kinetics of elementary and complex reaction mechanisms, as seen from a microscopic viewpoint. Unimolecular and bimolecular reactions under conditions of non-Boltzmann energy distributions. Consequences for combustion and atmospheric chemistry, as well as for fundamental kinetics. This course is equivalent to CHEM 5604 at Carleton University.
Course Component: Lecture

CHEM 3836 Reaction Profile Kinetic Analysis (1.5 unit)
Principles of non-linear dynamics as applied to very complex chemical reaction mechanisms containing feed-back processes. Monotonic, oscillatory, and chaotic dependence of concentrations on time. Gas phase and liquid phase reactions. This course is equivalent to CHEM 5605 at Carleton University.
Course Component: Lecture

CHM 8338 Unimolecular Reaction Dynamics: Experiment and Theory (1.5 unit)
Presentation of the theoretical models that have been developed for the understanding of unimolecular reactions, focussing on statistical theories such as RRKM theory. Experimental techniques for exploring the kinetics and mechanism of unimolecular reactions, including mass spectrometry, coincidence spectroscopy and ZEKE spectroscopy. This course is equivalent to CHEM 5100 at Carleton University.
Course Component: Lecture

CHM 8339 Heterogeneous Catalysis (1.5 unit)
Principles of catalytic reactions and topics in modern applications of catalysis. Bonding of substrates on surfaces; cluster-surface analogy; ensemble requirements; mechanisms of catalysis on metal and metal oxide surfaces. This course is equivalent to CHEM 5105 at Carleton University.
Course Component: Lecture

CHM 8340 Organotransition Metal Catalysis: E-H Bond Activation (1.5 unit)
Focus on the catalytic activation of E-H bonds by soluble organometallic complexes. Examples to include hydrogenation, hydrosilation and hydroboronation catalysis, hydroamination and hydrophosphination. This course is equivalent to CHEM 5106 at Carleton University.
Course Component: Lecture

CHM 8341 Transition-Metal Catalyzed Polymerization (1.5 unit)
Recent developments in polymerization catalysis via transition metal complexes, including insertion, metathesis, and atom-transfer polymerization. Brief overview of relevant concepts in polymer chemistry (e.g. molecular weight, polydispersity, living polymerization, the glass transition). This course is equivalent to CHEM 5107 at Carleton University.
Course Component: Lecture

CHM 8343 Chemistry of the Main Group Elements (1.5 unit)
Fundamental and applied aspects of main group element chemistry. Topics may include non-metal chemistry, main group organometallic chemistry, application of main group element compounds to 3 uses of main group element compounds in synthesis. This course is equivalent to CHEM 5202 at Carleton University.
Course Component: Lecture

CHM 8344 Computational Approaches in Medicinal Chemistry (1.5 unit)
Theory and application of methods used in the pharmaceutical industry including molecular mechanics. This course is equivalent to CHEM 5602 at Carleton University.
Course Component: Lecture

CHM 8345 Molecular Energy Transfer (1.5 unit)
Principles of energy transfer during non-reactive molecular collisions as deduced from experiment and theory, mostly in the gas phase. Translational, rotational, vibrational and electronic energies are discussed. This course is equivalent to CHEM 5603 at Carleton University.
Course Component: Lecture

CHM 8346 Supercritical Fluids (1.5 unit)
Fundamental and practical aspects of the uses of supercritical fluids in the chemistry laboratory. Thermodynamic treatment of high pressure multicomponent phase equilibria, transport properties, solubilities, supercritical fluid extraction and chromatography for analytical purposes, reactions in supercritical fluids, equipment considerations, new developments. This course is equivalent to CHEM 5102 at Carleton University.
Course Component: Lecture

CHM 8348 Analytical Instrumentation (1.5 unit)
Principles of modern electronics, devices and instruments. Measurement of photonic and electrochemical signals. Conditioning of signals for feedback control and microcomputer interfacing. Computational data analysis techniques such as simplex optimization. Applications in chemical analysis include amperometric detector for capillary electrophoresis, and surface plasmon resonance immunosensor. This course is equivalent to CHEM 5500 at Carleton University.
Course Component: Lecture

CHM 8349 Free Radicals in Chemistry and Biology (1.5 unit)
Oxidative stress induced by free radicals plays a significant role in most fatal and chronic diseases. The chemistry of bio-radicals will be described and related to pathobiological processes such as lipid peroxidation and atherosclerosis, protein nitration and cross linking, and DNA scission. This course is equivalent to CHEM 5504 at Carleton University.
Course Component: Lecture

CHM 8352 Analytical Approach to Chemical Problems (1.5 unit)
Case study of analytical approach to various chemical problems in agricultural, biochemical, environmental, food processing, industrial, pharmaceutical and material sciences. Analytical methods include capillary electrophoresis, chemiluminescence, Fourier transform infrared spectroscopy, inductively coupled plasma emission spectroscopy, mass spectrometry, biochemical sensors, and fiber optics for remote sensing. This course is equivalent to CHEM 5501 at Carleton University.
Course Component: Lecture

CHM 8353 Trace and Ultratrace Analytical Chemistry (3 units)
Criteria for evaluation and selection of analytical techniques and methods. Electroanalytical techniques. Simultaneous and sequential multielement determination. Atomic absorption, atomic emission and atomic fluorescence spectrometry, using optical spectrometric and mass-spectrometric determination. Applications of these techniques at trace and ultratrace levels in complex matrices. This course is equivalent to CHEM 5502 at Carleton University.
Course Component: Lecture

CHM 8355 Trace Elemental Analysis Using Inductively Coupled Plasma Emission (Icp-Es) and Mass Spectrometry (I (1.5 unit)
ICP-ES/MS techniques are among the most powerful tools presently available for elemental analysis for a wide range of interests such as environmental, geological and biological applications. The fundamentals, state of the art instrumentation, applications, existing challenges, and new research and developments will be covered.
Course Component: Lecture

CHM 8357 Advanced Topics in Biomolecular Sciences (1.5 unit)
Topics of current interest in biomolecular sciences and biological chemistry. Variable content from year to year. This course is equivalent to CHEM 5111 at Carleton University.
Course Component: Lecture

CHM 8359 Advanced Topics in Materials Chemistry (1.5 unit)
Topics of current interest in Materials Chemistry. Variable content from year to year. This course is equivalent to CHEM 5112 at Carleton University.
Course Component: Lecture
CHM 8360 Characterization Methods and Applications of Advanced Materials (1.5 unit)
Detailed discussion of physico-chemical techniques from the practical and theoretical point of view. Topics covered will be chosen from the following: thermal analysis technics, optical spectroscopy, electrochemistry, X-ray and electron diffraction, electron microscopy, electron spectroscopies, magnetic resonance, and general instrumental methods. Applications related to materials science may include: field affect transistors, photovoltaics, light emitting devices, batteries, fuel cells, smart windows, and liquid crystalline displays. This course is equivalent to CHEM 5116 at Carleton University.
Course Component: Lecture

CHM 8361 Chemical Biology Part A (1.5 unit)
Overview of the field of Chemical Biology focussed on modern aspects of molecular science with applications to understanding biological mechanisms. Concepts such as biorthogonal chemistry, chemical genetics, expanded genetic codes ans expanded genetic alphabets will be discussed in the context of how new chemical tools are developed and applied to understand and engineer living systems. Chemical probes for genomics, proteomics, metabolomics and vivo understanding of biology will be introduced with specific examples described. Genetically encoded probes will also be discussed. This course is equivalent to CHEM 5117 at Carleton University.
Course Component: Lecture

CHM 8362 Molecular Magnetism I (1.5 unit)
Metal containing paramagnetic molecules are omnipresent in chemistry and biochemistry. The presence of unpaired electron in a system has a drastic effect on physical properties of a molecule. Provides an introduction to the principles (Molecular Magnetism I) and advanced characterization of paramagnetic molecules (Molecular Magnetism II). Emphasis will be made on structure property relationship. This course will contain variable content from year to year by discussing recent progress on molecular magnetism. This course is equivalent to CHEM 5119 at Carleton University.
Course Component: Lecture

CHM 8363 Chemical Biology Part B (1.5 unit)
Overview of field of Chemical Biology focussed on modern aspects of molecular science with applications to understanding biological mechanisms. Concepts such as biorthogonal chemistry, chemical genetics, expanded genetic codes ans expanded genetic alphabets will be discussed in the context of how new chemical tools are developed and applied to understand and engineer living systems. Chemical probes for genomics, proteomics, metabolomics and vivo understanding of biology will be introduced with specific examples described. Genetically encoded probes will also be discussed. This course is equivalent to CHEM 5118 at Carleton University.
Course Component: Lecture

CHM 8364 Molecular Magnetism II (1.5 unit)
Metal containing paramagnetic molecules are omnipresent in chemistry and biochemistry. The presence of unpaired electron in a system has a drastic effect on physical properties of a molecule. Provides an introduction to the principles (Molecular Magnetism I) and advanced characterization of paramagnetic molecules (Molecular Magnetism II). Emphasis will be made on structure property relationship. This course will contain variable content from year to year by discussing recent progress on molecular magnetism. This course is equivalent to CHEM 5121 at Carleton University.
Course Component: Lecture

CHM 8355 Communication in Chemistry (1.5 unit)
This course will involve a variety of activities over the semester, including an oral presentation. The three major modes of scientific communication will be covered: written, verbal, and visual communication. Students will be educated in best practices via lectures and assignments, and regular attendance at Departmental seminars. Graded work will include: a) writing a cover letter and CV, and abstract for a conference presentation. b) communicating research orally to scientific and non-scientific audiences, c) producing a scientific poster. Plagiarism will also be discussed. The course is focused on students producing the above deliverables, peer review of their work, and enhancing student capacity to engage and communicate beyond a specialist academic audience.
Course Component: Lecture

CHM 8714 Électrochimie interfaciale (1.5 crédit)
Volet : Cours magistral

CHM 8722 Sujets choisis de la chimie de coordination (1.5 crédit)
Volet : Cours magistral

CHM 8723 Méthodes de la mécanique quantique - théorie (1.5 crédit)
Description de la théorie sur laquelle sont basées les méthodes de chimie quantique (HF, MPS, CI, DFT).
Volet : Cours magistral

CHM 8958 Projet de recherche / Research Proposal
Préparation d’un projet de recherche, sans rapport avec le sujet de thèse, à soutenir oralement devant un comité d’examen. L’étudiant doit démontrer sa capacité à défendre et justifier le mérite scientifique, la méthodologie, l’importance et la nouveauté du projet. Il doit réussir ce cours dans l’année qui suit la réussite de l’examen général. Les étudiants dont les résultats ne seraient pas satisfaisants peuvent se réinscrire une fois et doivent alors réussir en une session. / Preparation of a research project, unrelated to the thesis topic, to be defended orally before an examining committee. Student required to demonstrate the ability to defend and justify the scientific merit, methodology, importance, and novelty of the project. Must be completed within one year of passing the comprehensive examination. Students who fail this activity may re-register for it once and must then successfully complete it within one session.
Volet / Course Component: Recherche / Research

CHM 9998 Examen général de doctorat / Ph.D. Comprehensive
Volet / Course Component: Recherche / Research