MASTER OF SCIENCE
CHEMISTRY SPECIALIZATION
IN CHEMICAL AND
ENVIRONMENTAL
TOXICOLOGY

Summary
• Degree offered: Master of Science (MSc)
• Registration status options: Full-time; Part-time
• Language of instruction:
 • French
 • English

Note: Most of the courses in this program are offered in English.

• Primary program: MSc in Chemistry
• Collaborative specialization: Chemical and Environmental Toxicology
• Program options (expected duration of the program):
 • with thesis (6 full-time terms; 24 consecutive months)
 • with thesis, accelerated stream (3 full-time terms; 12 consecutive months)
• Academic units: Faculty of Science (http://science.uottawa.ca), Department of Chemistry and Biomolecular Sciences (http://science.uottawa.ca/chemistry), Ottawa-Carleton Chemistry Institute.

Program Description

Ottawa-Carleton Joint Program

Established in 1981, the Ottawa-Carleton Chemistry Institute (OCCI) combines the research strengths of the University of Ottawa and Carleton University. The institute offers graduate programs leading to the master’s (MSc) and doctoral (PhD) degrees in Chemistry.

Research facilities are shared between the two campuses. Students have access to the professors, courses and facilities at both universities; however, they must enroll at the “home university” of the thesis supervisor.

The Institute is a participating unit in the collaborative program in science, society and policy at the master’s level and in chemical and environmental toxicology at the master’s and doctoral levels.

Collaborative Program Description

Toxicology is the study of effects of toxic substances on living systems. These toxic substances can either be organic or inorganic, synthetic or natural materials. Environmental toxicology further extends to aspects of chemical transport, fate, persistence and biological accumulation of toxic substances and their effects at the population and community levels. While individual researchers usually specialize in a particular area, toxicologists today must be able to appreciate significant research in other fields and therefore require an understanding of the basic principles of other disciplines. To meet this challenge the University of Ottawa and Carleton University offer a joint collaborative program leading to a master of science or a PhD degree with specialization in chemical and environmental toxicology.

This Ottawa-Carleton collaborative program in Chemical and Environmental Toxicology is intended to augment the research and training available to students through the individual supporting institutes.

Main Areas of Research
• Inorganic chemistry
• Organic chemistry
• Theoretical chemistry
• Biological chemistry
• Analytical chemistry
• Physical chemistry

Other Programs Offered Within the Same Discipline or in a Related Area
• Master of Science Chemistry (MSc)
• Master of Science Chemistry Specialization in Science, Society and Policy (MSc)
• Doctorate in Philosophy Chemistry (PhD)
• Doctorate in Philosophy Chemistry Specialization in Chemical and Environmental Toxicology (PhD)

Fees and Funding
• Program fees:
 The estimated amount for university fees (https://www.uottawa.ca/university-fees) associated with this program are available under the section Finance your studies (http://www.uottawa.ca/graduate-studies/programs-admission/finance-studies).
 International students enrolled in a French-language program of study may be eligible for a differential tuition fee exemption (https://www.uottawa.ca/university-fees/differential-tuition-fee-exemption).
 • To learn about possibilities for financing your graduate studies, consult the Awards and financial support (https://www.uottawa.ca/graduate-studies/students/awards) section.

Notes
• Programs are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations) in effect for graduate studies at each of the two universities.
• In accordance with the University of Ottawa regulation, students have the right to complete their assignments, examinations, research papers, and theses in French or in English.
• Research activities can be conducted either in English, French or both, depending on the language used by the professor and the members of his or her research group.
Program Contact Information
Graduate Studies Office, Faculty of Science (https://science.uottawa.ca/en/faculty-services/graduate-studies)
30 Marie-Curie Street, Gendron Hall, Room 181
Ottawa, Ontario, Canada
K1N 6N5
Tel.: 613-562-5800 x3145
Email: gradsci@uOttawa.ca

Twitter | Faculty of Science (https://twitter.com/uOttawaScience?lang=en)
Facebook | Faculty of Science (https://www.facebook.com/uOttawaScience)

Admission Requirements
For the most accurate and up to date information on application deadlines, language tests and other admission requirements, please visit the specific requirements (https://www.uottawa.ca/graduate-studies/programs-admission/apply/specific-requirements) webpage.

To be eligible, candidates must:
• Have a bachelor's degree with a specialization, or a major in Chemistry (or equivalent) with a minimum admission average of 6.0 (B).

 Note: International candidates must check the admission equivalencies (https://www.uottawa.ca/graduate-studies/international/study-uottawa/admission-equivalencies) for the diploma they received in their country of origin.

• Demonstrate high academic achievement, as indicated in official transcripts, research reports, abstracts or any other documents demonstrating research skills.
• Meet the funding requirements.

 Note: International students must provide proof of financial support: i.e., a stipend provided by a supervisor as well as a combination of awards and/or trust funds.

• Identify at least one professor who is willing to supervise your research and thesis.
• We recommend that you contact potential thesis supervisors as soon as possible.
• To register, you need to have been accepted by a thesis supervisor.
• The supervisor's name is required at the time of application.
• The choice of supervisor will determine the primary campus location of the student. It will also determine which university awards the degree.
• Be sponsored into the collaborative specialization by a faculty member of the collaborative program, normally the thesis supervisor, who must be appointed, cross-appointed or stand as an adjunct at the primary program.
• Meet the following additional requirements:
 • Complete a relevant introductory course in toxicology, either:
 • Prior to admission to the collaborative program in chemical and environmental toxicology; or
 • While enrolled in the program by taking one of the two introductory courses (TOX 8156 or TOX 9104).
• Applicants to the Accelerated Stream of the MSc must meet the following additional requirements:
 • Have an admission average of 7.0 (B+);
 • Have a thesis supervisor who has agreed to continue to direct their research at the MSc level;
 • Have completed, with a grade of at least A-, a 4000- or 5000-level course in chemistry (CHM) that can be counted towards the MSc.

Language Requirements
Applicants must be able to understand, write and fluently speak the language of instruction (French or English) in the program to which they are applying. Proof of linguistic proficiency may be required.

Applicants whose first language is neither French nor English must provide proof of proficiency in the language of instruction.

Note: Candidates are responsible for any fees associated with the language tests.

Notes
• The admission requirements listed above are minimum requirements and do not guarantee admission to the program.
• Admissions are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations) in effect for graduate studies and the general regulations of the Ottawa-Carleton Institute for Chemistry (OCIC)
• Candidates must apply to the primary program and indicate in their application for admission to the master's program in Chemistry that they wish to be accepted into the collaborative-specialization in Chemical and Environmental Toxicology. Applications for admission may also be submitted upon acceptance into the primary master's program at the University of Ottawa. To be admitted to the collaborative program, candidates must also be accepted in the primary program.
Program Requirements
Master’s with Collaborative Specialization

The Department may require students to take additional courses, depending on their backgrounds.

Students must meet the following requirements for the master’s with collaborative specialization:

Compulsory Courses:

<table>
<thead>
<tr>
<th>Course Units</th>
<th>3 Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOX 8156</td>
<td>Principles of Toxicology</td>
</tr>
<tr>
<td>TOX 9104</td>
<td>Ecotoxicology</td>
</tr>
</tbody>
</table>

3 optional course units in chemistry (CHM) at the graduate level

Seminars:

<table>
<thead>
<tr>
<th>Seminar</th>
<th>1 Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 8256S</td>
<td>Seminar I</td>
</tr>
<tr>
<td>TOX 9105</td>
<td>Seminar in Toxicology</td>
</tr>
</tbody>
</table>

Thesis:

<table>
<thead>
<tr>
<th>Thesis</th>
<th>0 Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>THM 7999</td>
<td>Master’s Thesis</td>
</tr>
</tbody>
</table>

Note(s)

1. Students in the Accelerated Stream may be granted an equivalency of 3 units for a 4000 or 5000-level CHM course where they obtained a minimal grade of A during their BSc program with specialization or major in chemistry at the University of Ottawa.

2. The optional course units may also be selected from related disciplines approved by the Department of Chemistry.

3. The seminar courses involve the presentation of a seminar and regular attendance at the seminars presented by the Department.

4. The thesis in toxicology must be based on an original research carried out under the supervision of a faculty member participating in the chemical and environmental toxicology collaborative program.

5. Students are responsible for ensuring they have met all of the thesis requirements (http://www.uottawa.ca/graduate-studies/students/theses/).

Fast-Track from Master’s to PhD

Students enrolled in the master’s program in Chemistry at the University of Ottawa may be eligible to fast-track directly into the doctoral program without writing a master’s thesis. For additional information, please consult the "Admission Requirements" section of the PhD program.

Note: Students in the Accelerated Stream are not eligible to fast-track to the PhD program.

Minimum Requirements

The passing grade in all courses is B.

Students who fail two courses, or the thesis proposal, or whose research progress is deemed unsatisfactory must withdraw from the program.

Research
Research Fields & Facilities

Located in the heart of Canada’s capital, a few steps away from Parliament Hill, the University of Ottawa is among Canada’s top 10 research universities.

uOttawa focuses research strengths and efforts in four Strategic Areas of Development in Research (SADRs):

- Canada and the World
- Health
- e-Society
- Molecular and Environmental Sciences

With cutting-edge research, our graduate students, researchers and educators strongly influence national and international priorities.

Research at the Faculty of Science

The Faculty of Science has become a true centre of excellence in research through its world-class professors as well as its programs and infrastructure in Biology, Chemistry, Earth Sciences, Mathematics and Statistics, and Physics.

The research accomplished by its 140 internationally recognized professors, its approximately 400 graduate students and its dozens of postdoctoral researchers and visiting scientists has positioned the Faculty of Science as one of the most research intensive science faculties in Canada. Our professors have received many international and national awards including three NSERC Gerhard Herzberg Gold Medal winners and numerous Fellows of the Royal Society of Canada.

The Faculty of Science, through its strategic use of infrastructure programs, hosts world-class Core Facilities and is at the leading edge for the study of Catalysis, Experimental and Computational Chemistry, Environmental Toxins, Nuclear Magnetic Resonance, Isotope Analysis, Molecular Biology and Genomics, X-Ray Spectrometry/Diffractometry, Geochemistry, Mass Spectrometry, Physiology and Genetics of Aquatic Organisms, and Photonics. The Faculty is also associated with the Fields Institute for research in mathematical science and the Centre de recherche mathématiques (CRM) at the Université de Montréal, providing a unique setting for mathematical research.

For more information, refer to the list of faculty members and their research fields on Uniweb.

IMPORTANT: Candidates and students looking for professors to supervise their thesis or research project can also consult the website of the faculty or department (https://www.uottawa.ca/graduate-studies/students/academic-unit-contact-information) of their program of choice. Uniweb does not list all professors authorized to supervise research projects at the University of Ottawa.

Courses

Not all of the listed courses are given each year. The course is offered in the language in which it is described.

A 3-unit course at the University of Ottawa is equivalent to a 0.5-unit course at Carleton University.

CHM 5105 Radiochemistry (3 units)
A study of nuclear stability and decay; chemical studies of nuclear phenomena. Application of radioactivity.
Course Component: Lecture
Permission of the Department is required.

CHM 8104 Scientific Data Processing and Evaluation (3 units)
Optimization of scientific measurements, calibration, uni-variate and multi-variate analysis of scientific data, ‘intelligent’ spreadsheets for scientific data processing and presentation, noise reduction using spreadsheets, correction for signal drifts; examples from chemistry, spectroscopy and other scientific disciplines. This course is equivalent to CHEM 5904 at Carleton University.
Course Component: Lecture

CHM 8126 Bioorganic Chemistry (3 units)
Overview of recent developments in the mechanistic understanding of selected enzyme-catalyzed reactions. Topics include Cytochrome P450, methane monoxygenase, biotin and lipopid acid biosynthesis, methyl transfer, Vitamin B12, lipoxigenase, prostaglandin synthase; etc. Emphasis will be placed on biotransformations which are relatively poorly understood from a mechanistic point of view. This course is equivalent to CHEM 5303 at Carleton University.
Course Component: Lecture

CHM 8134 Spectroscopy for Organic Chemists (3 units)
Analysis of proton NMR spectra. Fourier transform 13C NMR, strategies for structure elucidation, relaxation times, two-dimensional NMR. Aspects of mass spectrometry. This course is equivalent to CHEM 5407 at Carleton University.
Course Component: Lecture

CHM 8150 Special Topics in Molecular Spectroscopy (3 units)
Topics of current interest in molecular spectroscopy. In past years, the following areas have been covered: electronic spectra of diatomic and triatomic molecules and their interpretation using molecular orbital diagrams; Raman and resonance Raman spectroscopy; symmetry aspects of vibrational and electronic levels of ions and molecules in solids in the presence of weak and strong resonant laser radiation. This course is equivalent to CHEM 5009 at Carleton University.
Course Component: Lecture

CHM 8156 Principles of Toxicology (3 units)
The basic theorems of toxicology with examples of current research problems. The concepts of exposure, hazard and risk assessment will be defined and illustrated with experimental material from some of the more dynamic areas of modern research. This course is equivalent to CHEM 5708 at Carleton University.
Course Component: Lecture

CHM 8157 Chemical Toxicology (3 units)
Advanced course in chemical toxicology dealing with both chemical hazard and exposure. Overview of the empirical data relating to the toxicity of various classes of chemicals to test organisms, followed by the study of toxicity at the cellular level, including studies of interactions between toxic substances and enzymatic systems. Data applicable to the interpretation and monitoring of the new WHMIS health regulations. Initial events in enzyme induction and muta-genesis. Study of predictive capabilities in the areas of structure-activity relationships and mechanisms of enzyme induction are considered, followed by an assessment of mechanisms of exposure to toxic chemicals. This course is equivalent to CHEM 5709 at Carleton University.
Course Component: Lecture

CHM 8158 Directed Special Studies (3 units)
Under unusual circumstances and with the recommendation of the research supervisor, it is possible to engage in a directed study on a topic of particular value to the student. This may also be used for unit if there are insufficient course offerings in a particular field of chemistry. This course is equivalent to CHEM 5900 at Carleton University.
Course Component: Lecture

CHM 8164 Organic Polymer Chemistry (3 units)
Basic principles of industrial and synthetic polymers. Polymerization and polymer characterization. Selected topics to cover some important polymers with emphasis on the synthesis, commodity plastics, engineering thermoplastics and specialty polymers. Students should have a basic knowledge of organic reaction mechanisms and stereochemistry. This course is equivalent to CHEM 5406 at Carleton University.
Course Component: Lecture

CHM 8167 Seminar in Toxicology (3 units)
A one-session course in seminar format highlighting current topics in toxicology. The student will present a seminar and submit a report on the seminar topics. Student, faculty and invited seminar speakers. This course is equivalent to CHEM 5805 at Carleton University.
Course Component: Lecture

CHM 8181 Chemical Physics of Electron-Molecule Collisions (3 units)
Basic classical scattering theory and quantum mechanical scattering theory. Experimental aspects, such as electron optics, electron gun fundamentals, energy analyzers and electron detectors. Applications to the understanding of the chemistry of materials. This course is equivalent to CHEM 5101 at Carleton University.
Course Component: Lecture

CHM 8220 Problems in Organic Chemistry (3 units)
Course Component: Lecture

CHM 8256S Seminar I (1 crédit / 1 unit)
This course is equivalent to CHEM 5801 at Carleton University.
Volet / Course Component: Séminaire / Seminar

CHM 8257S Seminar II (1 crédit / 1 unit)
This course is equivalent to CHEM 5802 at Carleton University.
Volet / Course Component: Séminaire / Seminar

CHM 8301 Analytical Mass Spectrometry (1.5 unit)
The principles of ion sources and mass spectrometers will be described, together with their applications to problems in chemistry and biochemistry. Introduction to the chemistry gaseous ions. Ion optics. Special emphasis on interpreting mass spectra. This course is equivalent to CHEM 5001 at Carleton University.
Course Component: Lecture

CHM 8302 Advanced Topics in Inorganic Chemistry (1.5 unit)
Topics of current interest in inorganic chemistry. Variable content from year to year. This course is equivalent to CHEM 5902 at Carleton University.
Course Component: Lecture

CHM 8303 Descriptive Organometallic Chemistry (1.5 unit)
Review of basic concepts of M-C bonds and of the preparation and reactivity of transition and non-transition metal organometallic species. Brief discussion of the most important catalytic processes (e.g. Ziegler-Natta, Fisher-Tropsch, catalytic hydrogenation and hydroformilation). This course is equivalent to CHEM 5204 at Carleton University.
Course Component: Lecture
Course Component: Lecture

CHM 8304 Advanced Topics in Organic Chemistry (1.5 unit)
Topics of current interest in organic chemistry. Variable content from year to year. This course is equivalent to CHEM 5901 at Carleton University.

Course Component: Lecture

CHM 8305 Synthesis Methods (1.5 unit)
Discussion of modern reactions and reagents and their development. Modern methods such as Evans enolates, catalytic processes, organometallic methods. Combination of methods for the preparation of complex molecules and building blocks. This course is equivalent to CHEM 5400 at Carleton University.

Course Component: Lecture

CHM 8307 Ions and Ionic Processes in Chemistry (1.5 unit)
Properties of water, hydration of ions, ionic interaction, colloidal and polymeric electrolytes. Ionization processes in solution. This course is equivalent to CHEM 5205 at Carleton University.

Course Component: Lecture

CHM 8308 Multinuclear Magnetic Resonance Spectroscopy (1.5 unit)
Principles of Nuclear Magnetic Resonance (NMR). Study of NMR parameters: chemical shift, spin-spin coupling, electric quadrupole coupling, spin-spin and spin-lattice relaxation rates. NMR and the periodic table. Dynamic NMR. Applications in chemistry and biochemistry. Fourier Transform technique. Pulse sequences. Basic principles and applications of two-dimensional NMR. This course is equivalent to CHEM 5002 at Carleton University.

Course Component: Lecture

CHM 8309 Advanced Topics in Physical (1.5 unit)
Topics of current interest in physical/theoretical chemistry. Variable content from year to year. This course is equivalent to CHEM 5903 at Carleton University.

Course Component: Lecture

CHM 8310 Introduction to Photochemistry (1.5 unit)
Basic principles of photochemistry including selection rules, energy transfer processes and the properties of excited state reactions. Lasers and their applications to measurements of the dynamics of elementary reactions. This course is equivalent to CHEM 5007 at Carleton University.

Course Component: Lecture

CHM 8311 Advanced and Applied Photochemistry (1.5 unit)
Photochemical reactions of small molecules and their relationship to atmospheric chemistry. Production and detection of reactive species. Photoysis. Multiphoton absorption. This course is equivalent to CHEM 5008 at Carleton University.

Course Component: Lecture
Prerequisite: CHM 8310

CHM 8312 Applications of Thermochemistry to Chemical Problems (1.5 unit)
Measurement of and interrelationship between molecular, radical and ionic enthalpies and their relevance to bond strengths and chemical reactivity. This course is equivalent to CHEM 5507 at Carleton University.

Course Component: Lecture

CHM 8313 Ion Structures in Organic Chemistry (1.5 unit)
Examination of the significance of structure on the generation and behaviour of organic cations and anions in gaseous and condensed phases. This course is equivalent to CHEM 5508 at Carleton University.

Course Component: Lecture

CHM 8314 Surface Chemistry Aspects of Electrochemical Science (1.5 unit)
Introduction to electrode processes and electrolysis. Potential differences at interfaces. Characterization of the electrical double layer. Dipole orientation effects, charge-transfer in adsorbed layers, electrochemical origins of surface science concepts. Theory of electron transfer, electrode kinetics, electrocatalysis. This course is equivalent to CHEM 5504 at Carleton University.

Course Component: Lecture

CHM 8315 Electrochemical Surface Science (1.5 unit)
Introduction to advanced in-situ techniques in electrochemistry: Scanning probe microscopy, Raman, infrared and laser spectroscopy. This course is equivalent to CHEM 5505 at Carleton University.

Course Component: Lecture
Prerequisites: CHM 8314, CHM 8714

CHM 8316 Surface Chemistry (1.5 unit)
Adsorption phenomena and isotherms, surface areas of solids. Modern techniques in surface chemistry and surface science such as electron diffraction, Auger electron spectroscopy, photoelectron spectroscopy, electron energy loss spectroscopy, infrared and Raman spectroscopy. Current new techniques. This course is equivalent to CHEM 5506 at Carleton University.

Course Component: Lecture

CHM 8317 Ionic Reaction Intermediates (1.5 unit)
Generation of ionic reaction intermediates in the condensed phase and their characterization by experimental techniques. Includes carbocations, zwitterionic intermediates. This course is equivalent to CHEM 5104 at Carleton University.

Course Component: Lecture

CHM 8318 Free Radicals (1.5 unit)
Photochemical generation of free radical reaction intermediates in the condensed phase. Techniques to be explored include laser flash photolysis, pulse radiolysis, esr, CIDNP and matrix isolation. This course is equivalent to CHEM 5103 at Carleton University.

Course Component: Lecture

CHM 8319 Total Syntheses (1.5 unit)
Discussion on philosophy and strategy development for complex syntheses, along with modern reagents and reactions that have shortened classical routes and lead to more efficient and atom economy. This course is equivalent to CHEM 5403 at Carleton University.

Course Component: Lecture

CHM 8320 Pericyclic and Stereoelectronic Effects (1.5 unit)
Pericyclic reactions, facial selectivity, stereoelectronic effects in carbohydrates and related acetal cleavage. Applications to complex synthetic problems. This course is equivalent to CHEM 5405 at Carleton University.

Course Component: Lecture

CHM 8321 Solid State Chemistry (1.5 unit)
Thermodynamic and kinetic aspects of solid state synthesis. Characterization of solids. Chemical and physical properties of solids that may include aspects of intercalation reactions, ionic conductors, glasses, electronic, magnetic optical and physical/mechanical properties. This course is equivalent to CHEM 5201 at Carleton University.

Course Component: Lecture
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Component</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 8322</td>
<td>Topics in Coordination Chemistry (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Brief introduction to basic concepts in coordination chemistry. Topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to include the following: carbon dioxide fixation, dinitrogen fixation,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>activation, olefin metathesis, nature of the M-M bond. This course is</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>equivalent to CHEM 5203 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8323</td>
<td>Quantum Mechanical Methods - Theory (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Examination of the theory behind quantum mechanical methods (HF, MP2, Cl, DFT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course is equivalent to CHEM 5600 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8324</td>
<td>Quantum Mechanical Methods - Applications (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Practical applications of methods taught in CHM 8323 such as thermochemistry,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>reaction pathway modeling, structure predictions. This course is</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>equivalent to CHEM 5601 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8325</td>
<td>Solid State Nmr Spectroscopy (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Brief introduction to solid state NMR spectroscopy. Topics include dipolar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>coupling interactions, chemical shielding anisotropy, the quadrupolar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>interaction and averaging techniques such as magic angle spinning. This</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>course is equivalent to CHEM 5003 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8326</td>
<td>Nmr Spectroscopy (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Advanced NMR techniques for both proton and carbon spectra, various</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>decoupling and related experiments. Interpretation of NOSY, COSY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and related data. This course is equivalent to CHEM 5004 at Carleton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8327</td>
<td>Physical Organic Chemistry (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Hammet functions, transition state energies, stereochemistry of organic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>compounds, and mechanisms of organic reactions and their determination.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course is equivalent to CHEM 5005 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8328</td>
<td>Applications of Organometallic Chemistry to Synthesis (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Study of organometallic methods, many of which have become catalytic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and involve metals such as Cu, Pd, Pt, Mo, Cr, Ru. Various applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to be discussed including Stille coupling, Heck reaction, ring closing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>metathesis. This course is equivalent to CHEM 5401 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8329</td>
<td>Medicinal Chemistry (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Preparation of drugs, their mode of action, their use in treating of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>disease. Evolution of medicine due to chemistry. Discussion of metabolic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pathways and their modification to control and/or circumvent disease.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course is equivalent to CHEM 5402 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8330</td>
<td>Heteroatoms (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Focus on heterocycles. Reactivity of these heterocycles and their use for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>drugs and applications for the total synthesis particularly of alkaloids.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extensive examination of carbohydrate chemistry and other important</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>oxygen heterocycles. This course is equivalent to CHEM 5404 at Carleton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8331</td>
<td>Physical Chemistry of Biological Macromolecules (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Focus on how the application of physical techniques, normally applied</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to small molecules, can be used to study macromolecular structure and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>function of DNA and proteins. Examples of applications to include: kinetics,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>electrochemistry, equilibria phenomena (thermodynamics). This course is</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>equivalent to CHEM 5300 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8332</td>
<td>Electrochemical Phenomena in Biological Systems (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Description of theory accounting for the generation of membrane potentials.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Application to the generation of nerve impulses. This course is equivalent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to CHEM 5301 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8333</td>
<td>Surface Phenomena in Biological Systems (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Description of theory of surface tension phenomena in aqueous systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion of effects of cell and macromolecular structures in biological</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>systems. This course is equivalent to CHEM 5302 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8334</td>
<td>Novel Organic and Inorganic Molecules and Radicals (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Topics to include neutralization-reionization techniques as well as flash</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pyrolysis and matrix isolation studies. This course is equivalent to CHEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5009 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8335</td>
<td>Ionic Processes in the Atmosphere and Interstellar Space (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Discussion on the importance of ionic reactions in the upper atmosphere and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the interstellar medium. Study of dynamics of ion-molecule reactions and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of experimental and theoretical approaches used for studying them. This</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>course is equivalent to CHEM 5006 at Carleton University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8336</td>
<td>Non-Equilibrium Kinetics (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Gas phase chemical kinetics of elementary and complex reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mechanisms, as seen from a microscopic viewpoint. Unimolecular and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bimolecular reactions under conditions of non-Boltzmann energy distributions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consequences for combustion and atmospheric chemistry, as well as for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fundamental kinetics. This course is equivalent to CHEM 5604 at Carleton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8337</td>
<td>Non-Linear Chemical Kinetics (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Principles of non-linear dynamics as applied to very complex chemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>reaction mechanisms containing feedback processes. Monotonic, oscillatory,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and chaotic dependence of concentrations on time. Gas phase and liquid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>phase reactions. This course is equivalent to CHEM 5605 at Carleton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>University.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 8338</td>
<td>Unimolecular Reaction Dynamics: Experiment and Theory (1.5 unit)</td>
<td>Lecture</td>
<td>University</td>
</tr>
<tr>
<td></td>
<td>Presentation of the theoretical models that have been developed for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the understanding of unimolecular reactions, focussing on statistical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>theories such as RRKM theory. Experimental techniques for exploring the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kinetics and mechanism of unimolecular reactions, including mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>spectrometry, coincidence spectroscopy and ZEKE spectroscopy. This course</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>is equivalent to CHEM 5100 at Carleton University.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHM 8339 Heterogeneous Catalysis (1.5 unit)
Principles of catalytic reactions and topics in modern applications of catalysis. Bonding of substrates on surfaces; cluster-surface analogy; ensemble requirements; mechanisms of catalysis on metal and metal oxide surfaces. This course is equivalent to CHEM 5105 at Carleton University.
Course Component: Lecture

CHM 8340 Organotransition Metal Catalysis: E-H Bond Activation (1.5 unit)
Focus on the catalytic activation of E-H bonds by soluble organometallic complexes. Examples to include hydrogenation, hydrosilation and hydroboration catalysis, hydroamination and hydrophosphination. This course is equivalent to CHEM 5106 at Carleton University.
Course Component: Lecture

CHM 8341 Transition-Metal Catalyzed Polymerization (1.5 unit)
Recent developments in polymerization catalysis via transition metal complexes, including insertion, metathesis, and atom-transfer polymerization. Brief overview of relevant concepts in polymer chemistry (e.g. molecular weight, polydispersity, living polymerization, the glass transition). This course is equivalent to CHEM 5107 at Carleton University.
Course Component: Lecture

CHM 8342 Clay Minerals Chemistry (1.5 unit)
Occurrence, classification and mineralogy of clay minerals. Intercalation processes and chemical modifications. Characterization of natural and modified clays. Industrial applications. This course is equivalent to CHEM 5200 at Carleton University.
Course Component: Lecture

CHM 8343 Chemistry of the Main Group Elements (1.5 unit)
Fundamental and applied aspects of main group element chemistry. Topics may include non-metal chemistry, main group organometallic chemistry, application of main group element compounds to 3 uses of main group element compounds in synthesis. This course is equivalent to CHEM 5202 at Carleton University.
Course Component: Lecture

CHM 8344 Computational Approaches in Medicinal Chemistry (1.5 unit)
Theory and application of methods used in the pharmaceutical industry including molecular mechanics. This course is equivalent to CHEM 5602 at Carleton University.
Course Component: Lecture

CHM 8345 Molecular Energy Transfer (1.5 unit)
Principles of energy transfer during non-reactive molecular collisions as deduced from experiment and theory, mostly in the gas phase. Translational, rotational, vibrational and electronic energies are discussed. This course is equivalent to CHEM 5603 at Carleton University.
Course Component: Lecture

CHM 8346 Supercritical Fluids (1.5 unit)
Fundamental and practical aspects of the uses of supercritical fluids in the chemistry laboratory. Thermodynamic treatment of high pressure multicomponent phase equilibria, transport properties, solubilities, supercritical fluid extraction and chromatography for analytical purposes, reactions in supercritical fluids, equipment considerations, new developments. This course is equivalent to CHEM 5102 at Carleton University.
Course Component: Lecture

CHM 8347 Electron Transfer: Theory and Experiment (1.5 unit)
The development of classical, semi-classical and quantum mechanical electronic transfer models is described. In addition, the course will examine recent experimental results and the application of electron transfer theory to biological systems. This course is equivalent to CHEM 5309 at Carleton University.
Course Component: Lecture

CHM 8348 Analytical Instrumentation (1.5 unit)
Principles of modern electronics, devices and instruments. Measurement of photonic and electrochemical signals. Conditioning of signals for feedback control and microcomputer interfacing. Computational data analysis techniques such as simplex optimization. Applications in chemical analysis include amperometric detector for capillary electrophoresis, and surface plasmon resonance immunosensor. This course is equivalent to CHEM 5500 at Carleton University.
Course Component: Lecture

CHM 8349 Free Radicals in Chemistry and Biology (1.5 unit)
Oxidative stress induced by free radicals plays a significant role in most fatal and chronic diseases. The chemistry of bio-radicals will be described and related to pathobiological processes such as lipid peroxidation and atherosclerosis, protein nitration and cross linking, and DNA scission. This course is equivalent to CHEM 5304 at Carleton University.
Course Component: Lecture

CHM 8350 Introduction to Polymer Structure and Morphology (1.5 unit)
Flexible and rigid rod polymers: effect of molecular constitution and conformation; examples of various polymer architectures and function; the amorphous state and glass transition; the crystalline state: typical crystal structures of polymers; polymorphism; crystallinity and long spacing. Thermal and solvent-induced crystallization; Lamellar and Spherulitic morphology. This course is equivalent to CHEM 5408 at Carleton University.
Course Component: Lecture

CHM 8351 Morphology of Polymers and Composites (1.5 unit)
Liquid crystalline state of polymers; morphology of block copolymers and polymer blends; plasticizers and fillers for tailoring properties; depression of glass transition and melting temperature; phase stability of polymer composites; mechanical properties; self assembled systems; polymer nano-composites for electronic devices; common experimental techniques. This course is equivalent to CHEM 5409 at Carleton University.
Course Component: Lecture

CHM 8352 Analytical Approach to Chemical Problems (1.5 unit)
Case study of analytical approach to various chemical problems in agricultural, biochemical, environmental, food processing, industrial, pharmaceutical and material sciences. Analytical methods include capillary electrophoresis, chemiluminescence, Fourier transform infrared spectroscopy, inductively coupled plasma emission spectroscopy, mass spectrometry, biochemical sensors, and fiber optics for remote sensing. This course is equivalent to CHEM 5501 at Carleton University.
Course Component: Lecture
This is a copy of the 2018-2019 catalog.

CHM 8353 Trace and Ultratrace Analytical Chemistry (3 units)
Criteria for evaluation and selection of analytical techniques and methods. Electroanalytical techniques. Simultaneous and sequential multielement determination. Atomic absorption, atomic emission and atomic fluorescence spectrometry, using optical spectrometric and mass-spectrometric determination. Applications of these techniques at trace and ultratrace levels in complex matrices. This course is equivalent to CHEM 5502 at Carleton University.

Course Component: Lecture

CHM 8354 Chemical Speciation in the Natural Environment (3 units)
Evaluation of analytical techniques and their capability for quantitative determination of chemical species (as opposed to total element-determination) in the natural environment. Electrochemical techniques for determination of chemical speciation of nutrient and toxicant elements present in the natural environment. This course is equivalent to CHEM 5503 at Carleton University.

Course Component: Lecture

CHM 8355 Trace Elemental Analysis Using Inductively Coupled Plasma Emission (Icp-Es) and Mass Spectrometry (I (1.5 unit)
ICP-ES/MS techniques are among the most powerful tools presently available for elemental analysis for a wide range of interests such as environmental, geological and biological applications. The fundamentals, state of the art instrumentation, applications, existing challenges, and new research and developments will be covered.

Course Component: Lecture

CHM 8356 Physical Methods in Inorganic Chemistry (1.5 unit)
The characterization of inorganic materials and coordination complexes by electronic absorption and electron paramagnetic spectrosopies, temperature and field dependant magnetic susceptibilities, and crystallography will be examined. This course is equivalent to CHEM 5308 at Carleton University.

Course Component: Lecture

CHM 8505 Synthèse organique (1.5 crédit)
Stratégies de synthèse complexes. Réactifs et réactions permettant des synthèses simplifiées et plus efficaces.

Volet : Cours magistral

CHM 8508 Spectroscopie par résonance magnétique multinucléaire (1.5 crédit)

Volet : Cours magistral

CHM 8714 Électrochimie interfaciale (1.5 crédit)

Volet : Cours magistral

CHM 8722 Sujets choisis de la chimie de coordination (1.5 crédit)

Volet : Cours magistral

CHM 8723 Méthodes de la mécanique quantique - théorie (1.5 crédit)
Description de la théorie sur laquelle sont basées les méthodes de chimie quantique (HF, MPS, CI, DFT).

Volet : Cours magistral

CHM 8958 Projet de recherche / Research Proposal
Préparation d’un projet de recherche, sans rapport avec le sujet de thèse, à soutenir oralement devant un comité d’examen. L’étudiant doit démontrer sa capacité à défendre et justifier le mérite scientifique, la méthodologie, l’importance et la nouveauté du projet. Il doit réussir ce cours dans l’année qui suit la réussite de l’examen général. Les étudiants dont les résultats ne seraient pas satisfaisants peuvent se réinscrire une fois et doivent alors réussir en une session. / Preparation of a research project, unrelated to the thesis topic, to be defended orally before an examining committee. Student required to demonstrate the ability to defend and justify the scientific merit, methodology, importance, and novelty of the project. Must be completed within one year of passing the comprehensive examination. Students who fail this activity may register for it once and must then successfully complete it within one session.

Volet / Course Component: Recherche / Research

CHM 9998 Examen général de doctorat / Ph.D. Comprehensive

Volet / Course Component: Recherche / Research

TOX 8156 Principles of Toxicology (3 units)
The basic theorems of toxicology with examples of current research problems. The concepts of exposure, hazard and risk assessment will be defined and illustrated with experimental material from some of the more dynamic areas of modern research. This course is equivalent to BIOL 6402 at Carleton University.

Course Component: Lecture

TOX 8157 Chemical Toxicology (3 units)
Advanced course in chemical toxicology dealing with both chemical hazards and exposure. Overview of empirical data relating to the toxicity of various classes of chemicals for test organisms, followed by study of toxicity at the cellular level, including studies of interactions between toxic substances and enzymatic systems. Data applicable to the interpretation and monitoring of WHMIS health regulations. Initial events in enzyme induction and mutagenesis. Study of predictive capabilities in the areas of structure-activity relationships and mechanisms of enzyme induction, followed by assessment of mechanisms of exposure to toxic chemicals.

Course Component: Lecture

TOX 9104 Ecotoxicology (3 units)
Selected topics and advances in ecotoxicology with emphasis on the biological effects of contaminants. The potential for biotic perturbation resulting from chronic and acute exposure of ecosystems to selected toxicants will be covered along with the methods pesticide, herbicide and pollutant residue analysis and the concept of bound residues. This course is equivalent to BIOL 6403 at Carleton University.

Course Component: Lecture

TOX 9105 Seminar in Toxicology (3 units)
A one-session course in seminar format highlighting current topics in toxicology. The student will present a seminar and submit a report on the seminar topic. Student, faculty and invited seminar speakers.

Course Component: Seminar
TOX 9106 Genetic Toxicology (3 units)
Topics in mutagenesis and DNA repair, including spontaneous and induced mutagenesis, genetic toxicology testing, the genetics and biochemistry of replication, DNA repair and recombination, and the role of mutagens in the development of genetic disease and cancer. This course is equivalent to BIOL 6406 at Carleton University.

Course Component: Lecture