MASTER OF SCIENCE
BIOLOGY AND
SPECIALIZATION SCIENCE,
SOCIETY AND POLICY

Summary
• Degree offered: Master of Science (MSc)
• Registration status options: Full-time; Part-time
• Language of instruction: English
• Primary program: MSc in Biology
• Collaborative specialization: Science, Society and Policy
• Program option (expected duration of the program):
 • with thesis (6 full-time terms; 24 consecutive months)

Program Description
Ottawa-Carleton Joint Program

Established in 1984, the Ottawa-Carleton Institute of Biology (OCIB) combines the research strengths of the University of Ottawa and Carleton University. The Institute offers graduate programs leading to the master’s (MSc) and doctoral (PhD) degrees in Biology.

Research facilities are shared between the two campuses. Students have access to the professors, courses and facilities at both universities.

The Institute is a participating unit in the collaborative programs in Bioinformatics (at the master’s level), in Chemical and Environmental Toxicology (at the master’s and doctoral levels), and in Science, Society and Policy (at the master’s level).

Collaborative Program Description

The collaborative program in Science, Society and Policy allows students enrolled in one of the participating master’s programs to specialize in science and innovation policy.

The objective of the collaborative program is to provide students with the knowledge and skills needed to evaluate the challenges confronting decision-making at the interface of science and policy. Students will have an opportunity to explore how evidence is used in decision-making, how current policies shape the scientific enterprise, and how emerging technologies interact with society.

The degree awarded specifies the primary program and indicates “Specialization in Science, Society and Policy.”

Main Areas of Research
• Cell and molecular biology
• Ecology, behaviour and systematics
• Physiology and biochemistry

Note: Additional information is posted in the departmental website.

Other Programs Offered Within the Same Discipline or in a Related Area
• Master of Science Biology (MSc)
• Master of Science Biology Specialization in Chemical and Environmental Toxicology (MSc)
• Master of Science Biology Specialization in Bioinformatics (MSc)
• Doctorate in Philosophy Biology (PhD)
• Doctorate in Philosophy Biology Specialization in Bioinformatics (PhD)
• Doctorate in Philosophy Biology Specialization in Chemical and Environmental Toxicology (PhD)

Fees and Funding
• Program fees:

 The estimated amount for university fees (https://www.uottawa.ca/university-fees/) associated with this program are available under the section Finance your studies (http://www.uottawa.ca/graduate-studies/programs-admission/finance-studies/).

 International students enrolled in a French-language program of study may be eligible for a differential tuition fee exemption (https://www.uottawa.ca/university-fees/differential-tuition-fee-exemption/).

 To learn about possibilities for financing your graduate studies, consult the Awards and financial support (https://www.uottawa.ca/graduate-studies/students/awards/) section.

Notes
• Programs are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations/) in effect for graduate studies and by the General Regulations of the Ottawa-Carleton Institute of Biology (OCIB).
• In accordance with the University of Ottawa regulation, students have the right to complete their assignments, examinations, research papers, and theses in French or in English.
• Research activities can be conducted either in English, French or both, depending on the language used by the professor and the members of his or her research group.
Program Contact Information
Graduate Studies Office, Faculty of Science (https://science.uottawa.ca/en/faculty-services/graduate-studies/)
30 Marie-Curie Street, Gendron Hall, Room 181
Ottawa, Ontario, Canada
K1N 6N5
Tel.: 613-562-5800 x3145
Email: gradsci@uOttawa.ca

Twitter | Faculty of Science (https://twitter.com/uOttawaScience/?lang=en)
Facebook | Faculty of Science (https://www.facebook.com/uOttawaScience/)
Twitter | Institute for Science, Society and Policy (https://twitter.com/issp_uottawa/?lang=en)
Facebook | Institute for Science, Society and Policy (https://www.facebook.com/uOttawaISSP/)

Admission Requirements
For the most accurate and up to date information on application deadlines, language tests and other admission requirements, please visit the specific requirements (https://www.uottawa.ca/graduate-studies/programs-admission/apply/specific-requirements/) webpage.

To be eligible, candidates must:
• Have a bachelor's degree in with a specialization, or a major in Biology (or equivalent) with a minimum average of 70% (B).

Note: International candidates must check the admission equivalencies (https://www.uottawa.ca/graduate-studies/international/study-uottawa/admission-equivalencies/) for the diploma they received in their country of origin.

• Demonstrate a good academic performance in previous studies as shown by official transcripts, research reports, abstracts or any other documents demonstrating research skills.
• Meet the funding requirements.

Note: International students must provide proof of financial support: i.e., a stipend provided by a supervisor as well as a combination of awards and/or trust funds.

• Identify at least one professor who is willing to supervise your research and thesis.
 • We recommend that you contact potential thesis supervisors as soon as possible.
 • To register, you need to have been accepted by a thesis supervisor.
 • The supervisor’s name is required at the time of application.

Language Requirements
Applicants must be able to understand and fluently speak the language of instruction (French or English) in the program to which they are applying. Proof of linguistic proficiency may be required.

Applicants whose first language is neither French nor English must provide proof of proficiency in the language of instruction.

Note: Candidates are responsible for any fees associated with the language tests.

Notes
• The choice of supervisor will determine the primary campus location of the student. It will also determine which university awards the degree.
• The admission requirements listed above are minimum requirements and do not guarantee admission to the program.
• Admissions are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations/) in effect for graduate studies and by the General Regulations of the Ottawa-Carleton Institute of Biology (OCIB).
• Students must indicate in their initial application for admission to the master's program in biology that they wish to be accepted into the collaborative program in science, society and policy. Students must be admitted in one of the primary programs participating in the collaborative program. Students will normally be informed about their acceptance into the collaborative program at the same time as being informed about their admission into the primary program.

Program Requirements
Requirements for this program have been modified. Please consult the 2022-2023 calendars (http://catalogue.uottawa.ca/en/archives/) for the previous requirements.

Master's with Collaborative Specialization
Students must meet the requirements of both the primary program and the collaborative specialization.

The units completed for the specialization count also towards the primary program.

The primary program may require students to take additional courses, depending on their backgrounds.

Compulsory Courses (BIO)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 5950</td>
<td>Research and Communication in Biology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3 optional course units in biology (BIO) at the graduate level</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory Course (ISP)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISP 5101</td>
<td>Decision at the Interface of Science and Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

Thesis

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>THM 7999</td>
<td>Master’s Thesis</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

Note(s)

1. The optional course units may also be selected in related disciplines approved by the Department of Biology.

2. Presentation and defence of a thesis on a research topic relating to science, society and policy, carried out under the supervision of a professor who is a member of the student’s primary program and/or of the collaborative program. The Science, Society and Policy Graduate Committee will determine whether or not the topic of the thesis is appropriate for the designation of “Specialization in Science, Society and Policy.” At least one of the thesis advisory committee members and thesis examiners must be recommended by the Science, Society and Policy Graduate Committee.

3. Students are responsible for ensuring they have met all of the thesis requirements (http://www.uottawa.ca/graduate-studies/students/theses/).

Fast-Track from Master’s to PhD

Students enrolled in the master’s program in Biology at the University of Ottawa may be eligible to fast-track directly into the doctoral program without writing a master’s thesis. For additional information, please consult the “Admission Requirements” section of the PhD program.

Minimum Requirements

The passing grade in all courses is B.

Students who fail two courses, or the thesis proposal, or whose research progress is deemed unsatisfactory must withdraw from the program.

Research

Research Fields & Facilities

Located in the heart of Canada’s capital, a few steps away from Parliament Hill, the University of Ottawa is among Canada’s top 10 research universities.

uOttawa focuses research strengths and efforts in four Strategic Areas of Development in Research (SADRs):

- Canada and the World
- Health
- e-Society
- Molecular and Environmental Sciences

With cutting-edge research, our graduate students, researchers and educators strongly influence national and international priorities.

Research at the Faculty of Science

The Faculty of Science has become a true centre of excellence in research through its world-class professors as well as its programs and infrastructure in Biology, Chemistry, Earth Sciences, Mathematics and Statistics, and Physics.

The research accomplished by its 140 internationally recognized professors, its approximately 400 graduate students and its dozens of postdoctoral researchers and visiting scientists has positioned the Faculty of Science as one of the most research intensive science faculties in Canada. Our professors have received many international and national awards including three NSERC Gerhard Herzberg Gold Medal winners and numerous Fellows of the Royal Society of Canada.

The Faculty of Science, through its strategic use of infrastructure programs, hosts world-class Core Facilities and is at the leading edge for the study of Catalysis, Experimental and Computational Chemistry, Environmental Toxins, Nuclear Magnetic Resonance, Isotope Analysis, Molecular Biology and Genomics, X-Ray Spectrometry/Diffraectometry, Geochemistry, Mass Spectrometry, Physiology and Genetics of Aquatic Organisms, and Photonics. The Faculty is also associated with the Fields Institute for research in mathematical science and the Centre de recherche mathématiques (CRM) at the Université de Montréal, providing a unique setting for mathematical research.

For more information, refer to the list of faculty members and their research fields on Uniweb.

IMPORTANT: Candidates and students looking for professors to supervise their thesis or research project can also consult the website of the faculty or department (https://www.uottawa.ca/graduate-studies/students/academic-unit-contact-information/) of their program of choice. Uniweb does not list all professors authorized to supervise research projects at the University of Ottawa.

Courses

Not all of the listed courses are given each year. The course is offered in the language in which it is described.

A 3-unit course at the University of Ottawa is equivalent to a 0.5-unit course at Carleton University.

BIO 5101 Topics in Biotechnology (3 units)

A course concerned with the utilization of biological substances and activities of cells, genes and enzymes in manufacturing, agricultural and service industries. A different topic will be selected each year. This course is equivalent to BIOL 5001 at Carleton University.

Course Component: Lecture

Prerequisite: A course in cell physiology or biochemistry, or permission of instructor.

BIO 5102 Advanced Field Ecology (3 units)

Field experience in a new environment (e.g. local, national, international) to learn about ecological processes (note extra fees associated with course). This course is equivalent to BIOL 5605 at Carleton University.

Course Component: Lecture

BIO 5103 Advanced Biochemistry (3 units)

Advanced topics in biochemistry: the chemical structure and function of biological macromolecules, biochemical thermodynamics, metabolism, photosynthesis, lipids and membranes. This course is equivalent to BIOL 5003 at Carleton University.

Course Component: Lecture

BIO 5104 Advances in Applied Biochemistry (3 units)
Contemporary methods of recombinant DNA technology combined with modern methods and strategies for expressing, secreting, purifying and characterizing proteins. This course is equivalent to BIOL 5004 at Carleton University.

Course Component: Lecture

BIO 5105 Advanced Neuroethology (3 units)
A comparative and evolutionary approach to studying neural mechanisms underlying animal behaviour, including genetic, neural and hormonal influences on behaviour. This course is equivalent to BIOL 5801 at Carleton University.

Course Component: Lecture
Prerequisites: Biology 61.335 and 61.361 or equivalents and registration in a graduate program, or written permission of the department.

BIO 5106 Bioinformatics (3 units)
Major concepts and methods of bioinformatics. Topics may include, but are not limited to genetics, statistics and probability theory, alignments, phylogenetics, genomics, data mining, protein structure, cell simulation and computing. This course is equivalent to BIOL 5506 at Carleton University.

Course Component: Lecture

BIO 5111 Biophysical Techniques (3 units)
Theory and application of current biochemical/biophysical instrumentation and techniques including X-ray crystallography, nuclear magnetic resonance spectrometry, infrared, circular dichroism and fluorescence spectroscopy, isothermal titration and differential scanning calorimetry. This course is equivalent to BIOL 5111 at Carleton University.

Course Component: Lecture

BIO 5121 Advances in Protein Engineering (3 units)
Theory, development and current techniques of protein and enzyme engineering. Topics to be discussed may also include applications in biotechnology, nanotechnology and new frontiers in basic and applied research. This course is equivalent to BIOL 5121 at Carleton University.

Course Component: Lecture

BIO 5128 Molecular Methods (3 units)
An intensive two-week laboratory course where students are introduced to methods such as CRISPR-Cas9 genome editing, in situ hybridization, immunohistochemistry, qRT-PCR and digital droplet PCR.

Course Component: Theory and Laboratory

BIO 5129 Adverse Outcome Pathways: A Framework to Support the Modernization of Chemical Risk Assessment (3 units)
This course will introduce the Adverse Outcome Pathway (AOP) framework and how it can be used to support the integration of modern test methods (e.g. in silico, in vitro, high throughput, etc..) into the chemical risk assessment process. Students will first learn about current practices and recent advances in both human health and ecological chemical risk assessment. Then students will receive an advanced introduction to the AOP framework, including the theory of AOPs, how they can be used in regulatory toxicology for facilitating the use of mechanistic data, test paradigm development, and risk assessment, and training on best practices for contributing to the AOP knowledge base. This will include in-class case studies on AOP development and a final assignment where student will be responsible for developing a novel AOP for a specific toxicity.

Course Component: Lecture

BIO 5130 Ethnobotany and Ethnopharmacology (3 units)
Introduction and current perspectives on world ethnobotanies, traditional knowledge, medicinal and food systems; quantitative and qualitative methods; ethical requirements; pharmacological basis of traditional drugs, phytochemistry, drug discovery and development; safety, risk assessment and regulations.

Course Component: Lecture

BIO 5302 Methods in Molecular Genetics (3 units)
Theory and associated applications of emerging methods in molecular genetics, including information gathered from large-scale genome-wide analysis and protein-protein interaction data, and how this information can advance understanding of cell biology. This course is equivalent to BIOL 5105 at Carleton University.

Course Component: Lecture
Prerequisites: Graduate standing and permission of the department.

BIO 5303 Biological Science in Practice (3 units)
Cross-cutting skills and issues in common to all biological disciplines. Key perspectives on philosophy of science, practical approaches to scientific publication and peer-review, data analysis and presentation, scientific inference, and technical writing will be provided through discipline-specific examples and associated practical work.

Course Component: Lecture

BIO 5305 Biostatistics I (3 units)
Application of statistical analyses to biological data. Topics include ANOVA, regression, GLMs, and may include loglinear models, logistic regression, general additive models, mixed models, bootstrap and permutation tests. This course is equivalent to BIOL 5407 at Carleton University.

Course Component: Lecture
Prerequisites: Graduate standing, courses in elementary ecology and statistics and permission of the department.

BIO 5306 Modelling for Biologists (3 units)
Use and limitations of mathematical and simulation modelling approaches for the study of biological phenomena. This course is equivalent to BIOL 5409 at Carleton University.

Course Component: Lecture

BIO 5308 Laboratory Techniques in Molecular Genetics (3 units)
Laboratory course designed to give students practical experience in recent important techniques in molecular genetics. This course is equivalent to BIOL 5106 at Carleton University.

Course Component: Lecture
Prerequisites: Graduate standing and permission of the department.

BIO 5310 Advanced Evolutionary Biology (3 units)
Advances in micro-and macroevolution including the mechanisms both driving and constraining evolutionary change, phylogenetic relationships, patterns of evolutionary change at the molecular or phenotypic level, and evolutionary theory and techniques as applied to these areas. This course is equivalent to BIOL 5510 at Carleton University.

Course Component: Lecture

BIO 5311 Advanced Evolutionary Ecology (3 units)
The ecological causes and consequences of evolutionary change, focussing on how the ecological interactions among organisms and their biotic and abiotic environments shape the evolution of phenotypic and species diversity. This course is equivalent to BIOL 5511 at Carleton University.

Course Component: Lecture
BIO 5312 Principles and Methods of Biological Systematics (3 units)
Biological systematics with reference to morphological and molecular character evolution and phylogeny reconstruction.
Course Component: Lecture

BIO 5314 Advances in Aquatic Sciences (3 units)
Advanced theoretical and applied aquatic sciences including current topics in limnology and oceanography (e.g. impacts of climate change, invasive species, and atmospheric pollution) with implications for lake, river, coastal and wetland management. This course is equivalent to BIOL 5514 at Carleton University.
Course Component: Lecture

BIO 5318 Biostatistics II (3 units)
Application of multivariate methods to biological data, including methods such as discriminant functions analysis, cluster analysis, MANOVA, principal components analysis.
Course Component: Lecture

BIO 5320 Advances in Conservation Biology (3 units)
Interdisciplinary exploration of the science of scarcity and diversity in a human dominated world. This course is equivalent to BIOL 5520 at Carleton University.
Course Component: Lecture

BIO 5321 Evolutionary Genetics (3 units)
Genetic mechanisms and processes responsible for variation and evolutionary change in natural populations. Topics may include population and quantitative genetics as applied to protein and genome evolution, molecular phylogenies, DNA sequences in population biology, and the evolution of multigene families. This course is equivalent to BIOL 5521 at Carleton University.
Course Component: Lecture

BIO 5310 Recherche et communication en biologie / Research and Communication in Biology (3 credits)
An introduction to the science of teaching and learning in biology. Students will be introduced to the foundational concepts in, and tools of, Discipline-Based Education Research (DBER) and will conduct their own DBER research project. This course is equivalent to BIOL 5910 at Carleton University. Includes: Experiential Learning Activities
Volet / Course Component: Séminaire / Seminar

BIO 5313 Techniques in Neuroscience (3 units)
An in-depth study of current topics in neuroscience. Course content varies yearly and has recently included cognitive neuroscience, neuropharmacology, neurodegeneration, and behavioural medicine. Also listed as PSYC 6300. This course is equivalent to BIOL 6203 at Carleton University.
Course Component: Lecture

BIO 5315 Advanced Science Communication (3 units)
The theory and practice of effective science communication. Topics may include: writing for, presenting to, and engaging with diverse audiences, as well as graphic design and data visualization, social and digital media, and knowledge mobilization. Experiential Learning Activity: Applied Research. This course is equivalent to BIOL 6500 at Carleton University.
Course Component: Lecture

BIO 5320 Advanced Seminar in Neuroscience (3 units)
A seminar focusing on the active research areas and interests of faculty, guest lecturers and graduate students, and on trends in diverse areas of neuroscience. Also listed as PSYC 6200. This course is equivalent to BIOL 6303 at Carleton University.
Course Component: Lecture

BIO 5324 Techniques in Aquatic Sciences (3 units)
Completion of a research project carried out under the supervision of a neuroscience faculty member. The student will learn a new neuroscience technique and apply it to a research objective. May be repeated for different projects. Also listed as PSYC 6204. This course is equivalent to BIOL 6204 at Carleton University.
Course Component: Lecture

BIO 5325 Selected Topics in Neuroscience (3 units)
An introduction to current topics in neuroscience. Course content varies yearly and has included cognitive neuroscience, neuropharmacology, neurodegeneration, and behavioural medicine. Also listed as PSYC 6204. This course is equivalent to BIOL 6305 at Carleton University.
Course Component: Lecture

BIO 5326 Special Topics in Neuroscience (3 units)
A comprehensive pro-seminar series, covering issues ranging from cellular and molecular processes through to neural systems and behaviours as well as psychopathology. Also listed as PSYC 6205.
Course Component: Lecture

BIO 5327 Selected Topics in Biology III (3 units)
Lectures and/or seminars dealing with current advances in a selected area or branch of biology, not covered by other graduate courses.
Course Component: Lecture

BIO 5328 Special Topics in Aquatic Sciences (3 units)
The application of ecological and evolutionary principles in addressing resource management challenges and environmental problems. This course is equivalent to BIOL 5512 at Carleton University.
Course Component: Lecture

Permission of the Department is required.

BIO 5329 Special Topics in Development (3 units)
Recent advances in developmental biology. Topics may include embryonic induction, regulation of morphogenesis and differentiation, mechanisms of regional specification and pattern formation, and developmental genetics. This course is equivalent to BIOL 6505 at Carleton University.
Course Component: Lecture
BIO 8109 Advanced Molecular Biology (3 units)
In-depth coverage of the structure, function, and synthesis of DNA, RNA, and proteins. This course is equivalent to BIOL 6001 at Carleton University.

Course Component: Lecture

BIO 8113 Chemical Toxicology (3 units)
Course Component: Lecture

BIO 8116 Advances on Plant Molecular Biology (3 units)
Use of molecular genetics in general plant biology and the contribution of plant genomics to our understanding of plant metabolism, plant development, and plant interactions with the environment at the molecular, genomic, and cellular levels. This course is equivalent to BIOL 6002 at Carleton University.

Course Component: Lecture
Prerequisite: BIO 8109/61.601F1 and this course normally will be offered together in the same year but only in alternate years.

BIO 8117 Advanced Cell Biology I (3 units)
Recent advances in cell biology, including such topics as membranes, signaling, the cytoskeleton and control of the cell cycle. This course is equivalent to BIOL 6201 at Carleton University.

Course Component: Lecture
Prerequisite: BIO 8118/61.222W1 and this course normally will be offered together in the same year but only in alternate years.

BIO 8118 Advanced Cell Biology II (3 units)
Topics for discussion may include the following: the structure, composition and three-dimensional organization of the nucleus, mechanisms and regulation of genome replication, structural organization of transcription. Nuclear reorganization during gamete development, fertilization, viral infection and the mitotic cell cycle. Normally offered in alternate years. This course is equivalent to BIOL 6202 at Carleton University.

Course Component: Lecture
Prerequisite: BIO 8118/61.222W1 and this course normally will be offered together in the same year but only in alternate years.

BIO 8120 Directed Studies in Biology (3 units)
One-on-one instruction in selected aspects of specialized biological subjects not covered by other graduate courses. Students may not take this course from their thesis supervisor(s), and are limited to one directed studies course per program. This course is equivalent to BIOL 5502 at Carleton University.

Course Component: Lecture
Prerequisite: BIO 8117/61.621F1 and this course normally will be offered together in the same year but only in alternate years.

BIO 8122 Advanced Insect Biology (3 units)
Overview of the biological processes that allow insects to function in their environments and to overcome the constraints and limitations that the environment places on them. This course is equivalent to BIOL 5307 at Carleton University.

Course Component: Lecture
Prerequisite: In addition to the course material, students will write two term papers (Alternate years).

BIO 8162 Advanced Endocrinology (3 units)
Major topics in comparative endocrinology: understanding the structure, function and evolution of vertebrate endocrine systems, including endocrine disruption. This course is equivalent to BIOL 5402 at Carleton University.

Course Component: Lecture
Prerequisite: An undergraduate Endocrinology course (BIO 4127 or equivalent).

BIO 8204S Ecology Seminar (3 crédits / 3 units)
Current advances in ecology.

Volet / Course Component: Cours magistral / Lecture

BIO 8301 Evolutionary Bioinformatics (3 units)
Fundamental concepts in molecular evolution and hands-on experience with computer analysis of DNA sequences. Topics may include molecular sequence databases, multiple alignments and phylogenetic trees. This course is equivalent to BIOL 5201 at Carleton University.

Course Component: Lecture
Prerequisite: Graduate standing plus basic courses in genetics and evolution; permission of the department.

BIO 8302 Topics in Evolutionary Genetics (3 units)
A lecture/seminar course on the genetic mechanisms and forces responsible for variation and evolutionary change in natural populations. Topics to include protein and genome evolution, molecular phylogenies, DNA sequences in population biology, and the evolution of multigene families. This course is equivalent to BIOL 5202 at Carleton University.

Course Component: Lecture
Prerequisite: Graduate standing plus basic courses in genetics and evolution; permission of the department (alternate years).

BIO 8303 Advanced Microscopy (3 units)
Development of the practical skills of microscopy through original research and supporting theory lectures. This course is equivalent to BIOL 5203 at Carleton University.

Course Component: Lecture
Prerequisites: Open to 4th year and graduate students with consent of the instructor.

BIO 8306 Advanced Topics in Ecology (3 units)
Recent developments in population, community and/or ecosystem ecology. This course is equivalent to BIOL 5508 at Carleton University.

Course Component: Lecture

BIO 8320 Advanced Plant Biology (3 units)
Recent developments in plant biology. Topics may include plant anatomy, systematics, evolution, genetics, ecology, ethnobotany, cell biology, and/or biotechnology. This course is equivalent to BIOL 6300 at Carleton University.

Course Component: Lecture
Prerequisite: Biology 61.425 and Biology 61.426/427, or permission of the department.

BIO 8361 Advanced Animal Physiology (3 units)
Recent advances in animal physiology, emphasizing comparative, evolutionary and environmental approaches. This course is equivalent to BIOL 6304 at Carleton University.

Course Component: Lecture

BIO 8365 Advanced Behavioural Ecology (3 units)
Recent advances in behavioural ecology including topics such as the evolution of tactics and strategies of group living, foraging, anti-predation, resource use and defence, cooperation, reproduction, and parental care. This course is equivalent to BIOL 5802 at Carleton University.

Course Component: Lecture

BIO 8403 Advanced Plant Physiology (4 units)
Course Component: Lecture

BIO 8510 Thèmes choisis en biologie (3 crédits)
Aspects de sujets biologiques spécialisés qui ne sont pas couverts dans d'autres cours d'études supérieures.

Volet : Cours magistral
BIO 8520 Études dirigées en biologie (3 crédits)
Enseignement individualisé sur un sujet biologique spécialisé qui n’est pas couvert dans d’autres cours d’études supérieures. Il est interdit de suivre ce cours avec son directeur de thèse. Limite d’une seule étude dirigée par programme.
Volet : Cours magistral

BIO 8910 Thèmes choisis en biologie / Special Topics in Biology (3 crédits / 3 units)
Aspects de sujets biologiques spécialisés qui ne sont pas couverts dans d’autres cours d’études supérieures. / Selected aspects of specialized biological subjects not covered by other graduate courses.
Volet / Course Component: Cours magistral / Lecture
Prérequis : connaissance passive de l’anglais. / Prerequisite: Passive knowledge of French.

BIO 8938 Interaction entre plantes et animaux / Plant Animal Interactions (3 crédits / 3 units)
Les substances métaboliques secondaires des plantes et leur rôle en tant que phagorépresseurs ou phagostimulants pour les animaux et en tant qu’agents antifongiques ou allelopathiques. On discutera de la coévolution des plantes et des organismes phytophages (insectes et mammifères) et des dimensions physiologique et écologique de cette relation. / Secondary metabolites of plants and their role as attractants or antifeedants to animals and as allelopathic or antifungal agents. Emphasis will be placed on co-evolution of plants and phytophagous organisms such as insects and mammals, and the ecological and physiological dimensions of this relationship. Offered in alternate years.
Ce cours est équivalent à BIOL 6404 à la Carleton University. / This course is equivalent to BIOL 6404 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

BIO 8940 Statistiques avancées et science ouverte / Advanced Statistics and Open Science (3 crédits / 3 units)
Les analyses statistiques sont fondamentales à un processus scientifique rigoureux. Par conséquent, il est primordial de comprendre les statistiques et de reporter correctement les analyses pour améliorer la transparence et la qualité de la science. Le cours a pour objectifs: 1) d’améliorer la compréhension des modèles statistique avancés (incluant les modèles mixtes généralisés); 2) de développer de bonnes habitudes pour coder (utilisation de R et Rmarkdown); 3) d’améliorer la gestion des données et du code statistique (manipulation de données et github); et 4) de présenter les principes de science ouverte (se basant sur OSF). / Statistics are a key component of rigorous science and as such there is a need to both understand advanced statistics and properly document the analysis to improve scientific communication transparency and quality. The course aims to 1) provide an understanding of advanced statistical models (including generalized linear mixed models), 2) develop good coding practices (using R and Rmarkdown), 3) improve data and code management (data manipulation and github) and 4) present the principles of open science (using OSF).
Volet / Course Component: Cours magistral / Lecture

BIO 8950 Recherche et communication en biologie / Research and Communication in Biology (3 crédits / 3 units)
Une introduction aux études supérieures en biologie en mettant l’accent sur les compétences centrales requises pour mener à bien des projets de recherche et développer les habiletés professionnelles requises. Le cours s’adresse aux étudiant.e.s débutant.e.s aux cycles supérieurs et sera composé de modules couvrant la rédaction scientifique et la communication orale, la gestion de projets de recherche, le développement de carrière et diverses compétences centrales requises dans les programmes d’études supérieures en biologie. / An introduction to graduate studies in biology with an emphasis on central skills required to successfully conduct research projects and develop required professional abilities. The course is intended for starting graduate students and will be composed of modules covering scientific writing and oral communication, research project management, career development and various central skills required in biology graduate programs.
Volet / Course Component: Séminaire / Seminar

BIO 9011 Principles of Toxicology (3 units)
Basic theorems of toxicology with examples of current research problems. The concepts of exposure, hazard and risk assessment will be defined and illustrated with experimental material from some of the more dynamic areas of modern research. This course is equivalent to BIOL 6402 at Carleton University.
Course Component: Lecture

BIO 9104 Ecotoxicology (3 units)
Advances in ecotoxicology with emphasis on the biological effects of contaminants. The potential for biotic perturbation resulting from chronic and acute exposure of ecosystems to selected toxicants will be covered along with the methods, pesticide, herbicide and pollutant residue analysis and the concept of bound residues. This course is equivalent to BIOL 6403 at Carleton University.
Course Component: Lecture

BIO 9105 Seminar in Toxicology (3 units)
Highlights current topics in toxicology. The student will present a seminar and submit a report on the seminar topic. Student, faculty and invited seminar speakers. This course is equivalent to BIOL 6405 at Carleton University.
Course Component: Lecture

BIO 9107 Toxicology and Regulation (3 units)
This course will help students develop the understanding and skills to apply research results in toxicology to real-world needs for the management of risks posed by environmental contaminants as well as the development of regulation and policy involving such management.
Course Component: Lecture

BIO 9701 Photobiologie (3 crédits)
Interaction de la lumière et des organismes vivants. Étude des sujets suivants : introduction à la photochimie et étude détaillée de la photosynthèse, de la vision, de la photosensibilité et du photopériodisme.
Volet : Cours magistral

BIO 9998 Examen de synthèse / Comprehensive Examination
Volet / Course Component: Recherche / Research
ISP 5101 Decision at the Interface of Science and Policy (3 units)
This course explores a number of critical issues in the design and implementation of science (or, more generally, evidence)-based policy. Topics will include: the nature of scientific evidence; who has standing in the provisioning of scientific evidence; the science and non-science of risk assessment; ethical dimensions of policy design and implementation; the role of science in policy design and implementation; the policy making process; and science policy performance evaluation.

Course Component: Lecture

ISP 5102 Science and Technology Governance and Communication (3 units)
This course explores a number of critical issues in the governance of science and technology (S&T) in democratic societies, with particular emphasis on the Canadian context. Topics will include the following: the history of S&T governance and communication in both Canada and abroad; an overview of the Canadian S&T policy and regulatory landscape; the role of government, the private sector and civil society in S&T governance; policy and regulatory experiments in fostering innovation (and the success thereof); the evolution of public S&T communication strategies and governance of emerging technologies.

Course Component: Lecture

ISP 5103 Capstone Seminar in Science, Society and Policy (3 units)
Involves partnering with organization(s) working on an issue relating to science, society and policy. In consultation with a member of the organization, students analyze the issue and complete a written report, either singly or in interdisciplinary teams, under the direction of the seminar professor who is responsible for evaluating the report.

Course Component: Lecture