MASTER OF APPLIED SCIENCE ENVIRONMENTAL ENGINEERING SPECIALIZATION IN ENVIRONMENTAL SUSTAINABILITY

Summary

- Degree offered: Master of Applied Science (MASc)
- Registration status options: Full-time; Part-time
- Language of instruction: English

Most of the courses in this program are offered in English. Research activities can be conducted in English, French, or both, depending on the language used by the professor and the members of his or her research group.

- Primary program: MASc in Environmental Engineering
- Collaborative specialization: Environmental Sustainability
- Program option (expected duration of the program):
 • within two years of full-time study
- Academic units: Faculty of Engineering (http://engineering.uottawa.ca/), Ottawa-Carleton Institute of Environmental Engineering (http://www ociene.ca/), Institute of the environment (https://www.uottawa.ca/environment/).

Program Description

Ottawa-Carleton Joint Program

Established in 2000, the Ottawa-Carleton Institute of Environmental Engineering (OCIENE) combines the teaching and research strengths of the Department of Civil Engineering and the Department of Chemical Engineering at the University of Ottawa with that of the Departments of Civil and Environmental Engineering at Carleton University.

The Institute offers graduate programs leading to the degrees of Master of Applied Science in Environmental Engineering (MASc), Master of Applied Science in Environmental Engineering (MASc) Specialization in Environmental Sustainability, a Master of Engineering (MEng) and Doctor of Philosophy (PhD) in Environmental Engineering.

Collaborative Specialization Description

The Institute of the Environment offers a master’s level collaborative specialization in Environmental Sustainability and an interdisciplinary Master of Science (MSc) in Environmental Sustainability. The master’s level collaborative specialization in Environmental Sustainability allows students enrolled in one of the participating master’s programs to specialize in environmental sustainability.

The guiding objective of the collaborative program is to provide graduate students with the knowledge and skills needed to identify and analyze the economic, legal, policy and scientific dimensions of environmental problems, and to employ an evidence-based approach to develop rational policy options for addressing those problems.

The degree awarded specifies the primary program and indicates “Specialization in Environmental Sustainability.”

Main Areas of Research

- Biofilms and biofilm technologies for water and wastewater treatment
- Drinking water: membrane treatment and climate change adaptation technologies
- Ecological engineering and agricultural waste management
- Mining impacted water management
- Northern, rural and First Nation water and wastewater
- Sustainable municipal waste management, groundwater, and remediation technologies
- Water resources and management

Note: Further information is posted on the departmental website.

Learning Outcomes

- Autonomy in conducting research
- Autonomy in preparing scholarly publications

Other Programs Offered Within the Same Discipline or in a Related Area

- Master of Applied Science Environmental Engineering (MASc)
- Master of Applied Science Civil Engineering (MASc)
- Master of Applied Science Civil Engineering Specialization in Science, Society and Policy (MASc)
- Master of Engineering Environmental Engineering (MEng)
- Master of Engineering Civil Engineering (MEng)
- Doctorate in Philosophy Environmental Engineering (PhD)
- Doctorate in Philosophy Civil Engineering (PhD)

Fees and Funding

- Program fees:

 The estimated amount for university fees (https://www.uottawa.ca/university-fees/) associated with this program are available under the section Finance your studies (http://www.uottawa.ca/graduate-studies/programs-admission/finance-studies/).

 International students enrolled in a French-language program of study may be eligible for a differential tuition fee exemption (https://www.uottawa.ca/university-fees/differential-tuition-fee-exemption/).

 To learn about possibilities for financing your graduate studies, consult the Awards and financial support (https://www.uottawa.ca/graduate-studies/students/awards/) section.

Notes

- Programs are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations/) in effect for graduate studies and by the general regulations of the Ottawa-Carleton Institute of Environmental Engineering (OCIENE).
To be eligible, candidates must:

- Have one of the following:
 - An honours bachelor’s degree with a specialization or a major in environmental engineering (or equivalent) with a minimum average of 70% (B); and
 - An honours bachelor’s degree with a specialization or a major in related engineering disciplines (civil, chemical, mechanical, etc.) with a minimum average of 70% (B); and
 - An honours bachelor’s degree with specialization or a major in environmental science disciplines with a minimum average of 70% (B).

Note: International candidates must check the admission equivalencies (https://www.uottawa.ca/graduate-studies/international/study-uottawa/admission-equivalencies/) for the diploma they received in their country of origin.

- Demonstrate a good academic performance in previous studies as shown by official transcripts, research reports, abstracts or any other documents demonstrating research skills.
- Identify at least one professor who is willing to supervise your research and thesis.
- We recommend that you contact potential thesis supervisors as soon as possible.
- To register, you need to have been accepted by a thesis supervisor.
- The supervisor’s name is required at the time of application.
- Meet the following additional requirements:
 - All students entering the program are required to have courses in mathematics, probability and statistics equivalent to courses required in undergraduate engineering programs.
 - All students entering the program are also required to have taken three undergraduate courses equivalent to the following University of Ottawa courses:
 - CHG 2312 or CVG 2116
 - CVG 2132
 - CVG 3132
 - These courses are considered to provide the minimum background in fluid mechanics, and in physical, chemical, and biochemical treatment principles, necessary to adequately follow environmental engineering courses at the graduate level. Depending on their background, students may have been exposed to these principles through a different combination of courses in their undergraduate curriculum. Students entering the program without an equivalent background in these topics are expected to take these courses early in their studies and they are considered additional to those normally required for the degree. The undergraduate courses required are specified in the certificate of admission.

Language Requirements

Applicants must be able to understand and fluently speak the language of instruction (French or English) in the program to which they are applying. Proof of linguistic proficiency may be required.

Applicants whose first language is neither French nor English must provide proof of proficiency in the language of instruction.

Note: Candidates are responsible for any fees associated with the language tests.

Notes

- The admission requirements listed above are minimum requirements and do not guarantee admission to the program.
- Admissions are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations/) in effect for graduate studies and by the general regulations of the Ottawa-Carleton Institute of Environmental Engineering (OCIENE).
- Students must indicate in their initial application for admission to the master’s program in environmental engineering that they wish to be accepted into a collaborative specialization in environmental sustainability. To be accepted into the collaborative program, candidates must be admitted to one of the programs participating in the collaborative program.
- In exceptional cases, students could commence their specialization in environmental sustainability at the beginning of the second term of enrollment.
- Research facilities are shared between the two campuses. Students have access to the professors, courses and facilities at both universities; however, the choice of research supervisor will determine the primary campus location of the student. It will also determine which university awards the degree.

Program Requirements
Master’s with Collaborative Specialization

The Department may require students to take additional courses, depending on their backgrounds.

Students must meet the following requirements for the master’s with collaborative specialization:

Compulsory Courses:
12 optional course units from the list of optional courses 1 12 Units

Seminars:
EVD 5100 Seminar in Environmental Sustainability 3 Units
EVG 5800 Seminar for Master’s Candidates in Environmental Engineering 2 1 Unit

Thesis:
THM 7999 Master’s Thesis 3, 4

Note(s)
1 A minimum of 3 course units must be selected from at least three of the following areas of study:
 - Air pollution
 - Water resources management, groundwater management and contaminant transport
 - Water and wastewater treatment
 - Management of solid, hazardous, and radioactive waste and pollution prevention
 - Environmental impact assessment

2 This course involves the presentation of a seminar and regular attendance at the departmental seminar series.

3 Presentation and successful defence of a thesis on a topic in environmental sustainability based on research carried out under the supervision of a professor who is a member of the student’s primary program and/or of the collaborative program. The Collaborative Program Committee determines whether or not the topic of the thesis is appropriate for the designation “Specialization in Environmental Sustainability. At least one of the thesis examiners must be a member of the Environmental Sustainability collaborative program.

4 Students are responsible for ensuring they have met all of the thesis requirements (http://www.uottawa.ca/graduate-studies/students/theses/).

List of Optional Courses

Air Pollution
CHG 8132 Adsorption Separation Processes 3 Units
EVG 7101 Air Pollution Control Process 3 Units
EVG 7104 Indoor Air Quality 3 Units
EVG 7105 Atmospheric Aerosols 3 Units
EVG 7106 Atmospheric Chemical Transport Modelling 3 Units
EVG 7161 Traffic Related Air Pollution 3 Units
EVG 7162 Air Quality Modelling 3 Units

Water Resources Management, Groundwater Management, and Contaminant Transport
CVG 5112 Computational Hydrodynamics 3 Units
CVG 5124 Coastal Engineering 3 Units

CVG 5160 Sediment Transport 3 Units
CVG 5162 River Hydraulics 3 Units
EVG 5125 Statistical Methods in Hydrology 3 Units
EVG 5182 Water Resources Management 3 Units
EVG 5183 Mixing and Transport in Water Bodies 3 Units
EVG 5301 Soil and Water Conservation Engineering 3 Units
EVG 7163 Case Studies in Hydrogeology 3 Units
EVG 7301 Contaminant Hydrology 3 Units
EVG 7303 Multiphase Flow in Soils 3 Units
GEO 5143 Environmental Isotopes and Groundwater Geochemistry 3 Units
GEO 5147 Aqueous Inorganic Geochemistry and Modelling 3 Units
GEO 5153 Computer Techniques in the Earth Sciences 3 Units

Management of Solid, Hazardous, and Radioactive Waste and Pollution Prevention
CVG 5314 Geotechnical Hazards 3 Units
EVG 5133 Solid Waste Management 3 Units
EVG 5179 Anaerobic Digestion 3 Units
EVG 5331 Sludge Utilization and Disposal 3 Units
EVG 7132 Sludge Treatment and Disposal 3 Units
EVG 7134 Resource Industry Waste Management 3 Units
EVG 7164 Hazardous and radioactive Wastes 3 Units
EVG 7201 Geo-Environmental Engineering 3 Units

Water and Wastewater Treatment
EVG 5001 Biofilm Processes in Wastewater Treatment 3 Units
EVG 5130 Wastewater Treatment Process Design 3 Units
EVG 5132 Unit Operations of Water Treatment 3 Units
EVG 5134 Chemistry for Environmental Engineering 3 Units
EVG 5137 Water and Wastewater Treatment Process Analysis 3 Units
EVG 5138 Advanced Water Treatment 3 Units
EVG 5302 Decentralized Wastewater Management 3 Units
EVG 7143 Advanced Ultraviolet Processes 3 Units
EVG 7144 Advanced Wastewater Treatment 3 Units
CHG 8192 Membranes in Clean Processes 3 Units

Environmental Impact Assessment
EVG 5139 Environmental Assessment of Civil Engineering Projects 3 Units
EVG 5212 Climate Change Impacts on Water Resources 3 Units
EVG 7200 Climate Change and Engineering 3 Units

Other Courses
CVG 7140 Statistics, Probabilities and Decision-Making 3 Units
CHG 8194 Membrane Liquid Separation Processes and Materials 3 Units
CHG 8195 Advanced Numerical Methods in Chemical and Biological Engineering 3 Units
CHG 8196 Interfacial Phenomena in Engineering 3 Units
EVG 6108 Directed Studies I 3 Units
EVG 6109 Directed Studies II 3 Units
EVG 6300 Special Topics in Environmental Engineering 3 Units
EVG 6301 Special Topics in Environmental Engineering 3 Units
EVG 6302 Special Topics in Environmental Engineering 3 Units

Minimum Requirements

The passing grade in all courses is B.

Students who fail six units, or the thesis proposal, or whose research progress report is deemed unsatisfactory are required to withdraw from the program.

Fast-track from Master’s to PhD

Students enrolled in the master’s program in environmental engineering at the University of Ottawa may be eligible to fast-track directly into the doctoral program without writing a master’s thesis. For additional information, please contact the graduate studies office of the Faculty of Engineering.

Research

Research Fields & Facilities

Located in the heart of Canada’s capital, a few steps away from Parliament Hill, the University of Ottawa is among Canada's top 10 research universities.

uOttawa focuses research strengths and efforts in four Strategic Areas of Development in Research (SADRs):

- Canada and the World
- Health
- e-Society
- Molecular and Environmental Sciences

With cutting-edge research, our graduate students, researchers and educators strongly influence national and international priorities.

Research at the Faculty of Engineering

Areas of research:

- Environmental Engineering
- Chemical and Biological Engineering
- Civil Engineering
- Electrical Engineering and Computer Science
- Mechanical Engineering

For more information, refer to the list of faculty members and their research fields on Uniweb.

IMPORTANT: Candidates and students looking for professors to supervise their thesis or research project can also consult the website of the faculty or department (https://www.uottawa.ca/graduate-studies/students/academic-unit-contact-information/) of their program of choice.

EVG 5137 Water and Wastewater Treatment Process Analysis (3 units)
Mass balancing in complex systems. Reaction kinetics and kinetic data analysis: classical and computer based methods. Reactor design: ideal reactors and real reactors. Analysis of tracer tests. Interfacial mass transfer: common theories. Mass transfer models. This course is equivalent to ENVJ 5905 at Carleton University.
Course Component: Lecture
Previously CVG 5137.

EVG 5138 Advanced Water Treatment (3 units)
Scope, limitations and design procedures for water treatment processes for the removal of toxic and non-standard contaminants. Current water treatment problems and regulations, activated carbon treatment, ion exchange, disinfection practices and oxidation via advanced oxidation processes (ozonation and UV oxidation), iron and manganese removal, recent developments in coagulation, membranes, air stripping. This course is equivalent to ENVJ 5902 at Carleton University.
Course Component: Lecture
Previously CVG 5138.

EVG 5139 Environmental Assessment of Civil Engineering Projects (3 units)
Procedures and methods for systematic evaluation of the environmental impact of civil engineering projects including wastewater disposal systems, solid waste disposal systems, and water resource development systems. This course is equivalent to ENVJ 5700 at Carleton University.
Course Component: Lecture
Previously CVG 5139.

EVG 5179 Anaerobic Digestion (3 units)
Advanced theoretical, biological, and practical aspects of anaerobic digestion processes. Principles to be applied to the design and application of conventional and advanced anaerobic processes used for treatment of municipal and industrial wastewaters. Topics to include microbiology and biochemistry fundamentals, techniques for monitoring anaerobic digestion performance, municipal sludge stabilization, anaerobic composting, anoxic/anaerobic bioremediation, Andrew’s dynamic model. Design of the following: two-phase digestion; Downflow Stationary Fixed Film (DSFF) reactors; Uplow Anaerobic Sludge Blanket (UASB); Uplow Blanket Filter (UBF) reactors; and Anaerobic Sequencing Batch Reactors (ASBR). This course is equivalent to ENVJ 5908 at Carleton University.
Course Component: Lecture
Previously CVG 5179.

EVG 5182 Water Resources Management (3 units)
Global water supply and demand; Integrated water resources management; Modeling and optimization of water resource systems; Reservoir Management; Uncertainty modeling; Climate Change and water; Decision under uncertainty.
Course Component: Lecture
Previously CVG 5182.

EVG 5183 Mixing and Transport in Water Bodies (3 units)
Typical models for selected water resources systems: Rivers, lakes, estuaries; Water quality parameters; Conservative parameters; Non conservative parameters; Laminar and turbulent flows; Dispersion; Pollution sources; Modeling; Simplified (integral) models; Dilution models; Three Dimensional models; Advection-Diffusion Equation; Analytical solution; Numerical solution; Non-conservative transport and Multi-component systems; Modeling approaches based on conservative and non-conservative transport and kinetics; Certain water quality parameters (Temperature, Salinity, etc.).
Course Component: Lecture

EVG 5203 Hazardous and Radioactive Waste Management (3 units)
This course is equivalent to ENVE 5203 at Carleton University.
Course Component: Lecture

EVG 5212 Climate Change Impacts on Water Resources (3 units)
Spatiotemporal distribution of water and its impact on human activities, including domestic and municipal consumption, hydropower generation, rain-fed and irrigated agriculture, design and operation of sewer systems, floodplain zoning, navigation, etc. Critical assessment of methodologies for climate change impacts estimation. Theoretical knowledge and hands-on application experience needed to perform climate change analysis on a water resources system.
Course Component: Lecture

EVG 5301 Soil and Water Conservation Engineering (3 units)
The design, water quality and climate change impacts of soil and water conservation systems. Topics include: urban storm water management (including LID) erosion control practices, subsurface and surface drainage systems and irrigation technologies.
Course Component: Lecture

EVG 5302 Decentralized Wastewater Management (3 units)
This course covers fundamental principles and practical design applications of decentralized wastewater treatment for domestic and industrial sources. Topics include: management of decentralized wastewater systems, pre-treatment systems, soil infiltration systems, advanced onsite technologies, constructed wetlands, alternative collection systems, wastewater reuse and septage management.
Course Component: Lecture

EVG 5331 Sludge Utilization and Disposal (3 units)
Introduction to sludge processing technology and procedures to be used in the planning and design of sludge treatment processes. Evaluate the economics and performance of sludge unit process operations. Selection of methods for the final disposition of sludge. This course is equivalent to ENVJ 5902 at Carleton University.
Course Component: Lecture

EVG 5333 Research Methodology (3 units)
Key components and strategies required to build a robust scientific research program in environmental engineering including research questions, literature review, experiment design, data interpretation, scientific manuscripts, public speaking, ethics, and plagiarism.
Course Component: Lecture

EVG 5800 Seminar for Master’s Candidates in Environmental Engineering (1 crédit)
Ce cours est équivalent à ENVE 5800 à la Carleton University.
Volet : Recherche

EVG 5801 Seminar for Doctoral Candidates in Environmental Engineering (3 crédits)
Ce cours est équivalent à ENVE 7800 à la Carleton University.
Volet : Recherche

EVG 6001 Projet en génie de l’environnement / Environmental Engineering Project (6 crédits / 6 units)
Ce cours est équivalent à ENVE 5900 à la Carleton University. / This course is equivalent to ENVE 5900 at Carleton University.
Volet / Course Component: Recherche / Research

EVG 6108 Directed Studies I (3 units)
This course is equivalent to ENVE 5906 at Carleton University.
Course Component: Research

EVG 6109 Directed Studies II (3 units)
This course is equivalent to ENVE 5907 at Carleton University.
Course Component: Research
EVG 6300 Special Topics in Environmental Engineering (3 units)
Course Component: Lecture

EVG 6301 Special Topics in Environmental Engineering (3 units)
This course is equivalent to ENVE 5701 at Carleton University.
Course Component: Lecture

EVG 6302 Special Topics in Environmental Engineering (3 units)
This course is equivalent to ENVE 5702 at Carleton University.
Course Component: Lecture

EVG 6303 Special Topics in Environmental Engineering (3 units)
Course Component: Lecture

EVG 6304 Special Topics in Environmental Engineering (3 units)
Course Component: Lecture

EVG 6508 Études dirigées I (3 crédits)
Volet: Cours magistral

EVG 6509 Études dirigées II (3 crédits)
Volet: Cours magistral

EVG 7001 Topics in Environmental Engineering (3 crédits / 3 units)
This course is equivalent to ENVE 5701 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

EVG 7002 Topics in Environmental Engineering (3 crédits / 3 units)
This course is equivalent to ENVE 5702 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

EVG 7003 Topics in Environmental Engineering (3 crédits / 3 units)
This course is equivalent to ENVE 5703 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

EVG 7004 Topics in Environmental Engineering (3 crédits / 3 units)
This course is equivalent to ENVE 5704 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

EVG 7005 Topics in Environmental Engineering (3 crédits / 3 units)
This course is equivalent to ENVE 5705 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

EVG 7101 Air Pollution Control Process (3 units)
Course Component: Lecture
Previously CVG 7101.

EVG 7104 Indoor Air Quality (3 units)
This course is equivalent to ENVE 5104 at Carleton University.
Course Component: Lecture

EVG 7105 Atmospheric Aerosols (3 units)
Atmospheric aerosol characterization and size distribution, theoretical fundamentals of physical and chemical processes that govern formation and transformation of aerosols in the atmosphere such as nucleation, coagulation, condensation/evaporation, and aerosol thermodynamics; interactions between aerosols and climate, aerosol sampling and measurement. This course is equivalent to ENVE 5105 at Carleton University.
Course Component: Lecture

EVG 7106 Atmospheric Chemical Transport Modelling (3 units)
Fundamentals of Eulerian atmospheric modelling; overview of global and regional atmospheric models, basic principles of numerical methods used in air quality models; applications of air quality models; uncertainty and sensitivity analysis in air quality modelling. This course is equivalent to ENVE 5106 at Carleton University.
Course Component: Lecture

EVG 7132 Sludge Treatment and Disposal (3 units)
Aspects of sludge treatment, management, and disposal; sludge generation and characterization, thickening, preliminary treatment processes, aerobic and anaerobic digestion, lime stabilization, conditioning, dewatering, composting, land application and other disposal options, and thermal processes. This course is equivalent to ENVE 5205 at Carleton University.
Course Component: Lecture

EVG 7134 Resource Industry Waste Management (3 units)
Application of geotechnique and hydraulics to management of resource extraction residuals such as tailings, waste rock, and sludge from hard rock mines and bitumen extraction operations. Geotechnique of conventional and high density tailings disposal. Pipeline transport of concentrated suspensions. Closure technologies for mine waste impoundments. This course is equivalent to ENVE 5204 at Carleton University.
Course Component: Lecture

EVG 7143 Advanced Ultraviolet Processes (3 units)
Fundamentals and applications of ultraviolet (UV) light-based processes for water and wastewater treatment; principles of photochemistry and photobiology, methods of UV dose determination, UV disinfection of microorganisms, advanced oxidation processes, and design of UV disinfection systems and reactors. This course is equivalent to ENVE 5003 at Carleton University.
Course Component: Lecture

EVG 7144 Advanced Wastewater Treatment (3 units)
Fundamentals, applications, and design of biological, physical, and chemical treatment processes employed for advanced treatment of domestic and industrial wastewater. Reuse applications and guidelines. This course is equivalent to ENVE 5004 at Carleton University.
Course Component: Lecture

EVG 7161 Traffic Related Air Pollution (3 units)
Pollutant formation, emission characterization, emission control technology and emission modeling from motor vehicles. Dispersion and receptor modeling for conservative pollutants in urban microenvironments. Personal exposure and health risk assessment.
Course Component: Lecture
Previously CVG 7161.

EVG 7162 Air Quality Modelling (3 units)
Dispersion modeling for simple and complex sources and complex terrain. Physical and chemical transformations for pollutants in the atmosphere. Urban and regional air pollution modeling for reactive pollutants. The urban air shed model. Regional air quality modeling case studies.
Course Component: Lecture
Previously CVG 7162.
EVD 7163 Case Studies in Hydrogeology (3 units)
Development of a conceptual model; chemistry, geology and hydrology, site characterization, initial and boundary conditions. Application of industry-recognized computer codes to model flow and contaminant transport at a particular site. Evaluation of remedial alternatives at a site. Modeling of the more common remediation technologies. This course is equivalent to ENVE 5302 at Carleton University.
Course Component: Lecture

EVD 7164 Hazardous and radioactive Wastes (3 units)
Classification of hazardous, radioactive and mixed wastes, hazardous waste treatment processes, wastes generated in the nuclear fuel cycle, radioactive waste classification, radioactive waste treatment and management of residuals, engineered systems for long-term isolation and disposal, mixed waste management. This course is equivalent to ENVE 5293 at Carleton University.
Course Component: Lecture

EVD 7200 Climate Change and Engineering (3 units)
This course will cover broad environmental and climate change issues affecting engineered systems.
Course Component: Lecture

EVD 7201 Geo-Environmental Engineering (3 units)
This course is equivalent to ENVE 5201 at Carleton University.
Course Component: Lecture

EVD 7202 Contaminant Fate Mechanisms (3 units)
This course is equivalent to ENVE 5202 at Carleton University.
Course Component: Lecture

EVD 7301 Contaminant Hydrology (3 units)
This course is equivalent to ENVE 5301 at Carleton University.
Course Component: Lecture

EVD 7303 Multiphase Flow in Soils (3 units)
This course is equivalent to ENVE 5303 at Carleton University.
Course Component: Lecture

EVD 7401 Environmental Impact Assessment of Major Projects (3 units)
This course is equivalent to ENVE 5401 at Carleton University.
Course Component: Lecture

EVD 7402 Finite Elements in Field Problems (3 units)
This course is equivalent to ENVE 5402 at Carleton University.
Course Component: Lecture

EVD 9998 Proposition de thèse et examen de synthèse / Thesis Proposal and Comprehensive Examination
Volet / Course Component: Recherche / Research

EVD 5100 Seminar in Environmental Sustainability (3 units)
Overview of environmental sustainability issues using climate change as an example. Application of integrated analyses based on concepts in science, law, economics and policy to devise policy solutions. The debate about the scientific evidence for climate change and international efforts to negotiate an agreement. The economic, political and social dimensions of climate change and measures taken both nationally and internationally to mitigate its effects.
Course Component: Seminar

EVD 5101 Economics of Environmental Law and Policy (3 units)
Environmental issues and the environmental policy framework from an economics perspective. Review of the underlying theory in relation to economic concepts such as efficiency, market failure, externalities, cost-benefit, and valuation. Overview of macroeconomic topics such as economic growth and green accounting, and their relation to law and policy. Application of these theoretical concepts to various environmental challenges, from climate change and energy regulation to managing ecosystem services and conserving biodiversity. Policy options for managing environmental challenges, from traditional command and control regulation to economic instruments such as environmental taxation, and cap and trade programs. Evaluation of the environmental, social, and economic effectiveness of the various policy options, and integration of economic theory into environmental policy development.
Course Component: Lecture

EVD 5109 Applied Environmental Sustainability (3 units)
Uses an environmental sustainability case study, such as climate change, to learn how to synthesize information about a problem from multiple disciplinary perspectives, to critically evaluate such information using rigorous methodological approaches, and to design and evaluate policy or regulatory solutions.
Course Component: Seminar

EVD 5111 Capstone Seminar in Environmental Sustainability (3 units)
Involves partnering with organization(s) working on a sustainability issue. Students work in interdisciplinary teams to identify the scientific, economic, legal and social dimensions of a particular environmental problem, evaluate a set of candidate solutions, and recommend an approach.
Course Component: Seminar

EVD 5113 Foundations of Environmental Policy (3 units)
Study of the key political and administrative factors affecting the formulation and implementation of environmental policy, including democratic institutions, various methods for citizen and stakeholder engagement and their influence on the decision-making process in government, public opinion and the framing of policy problems, values and the use of scientific evidence in policy-making, lobbying and the role of interest representation, federalism and multi-level environmental governance, and the international governance of environmental problems. Case studies will place Canada in a comparative context and explore the importance of political factors across areas of environmental policy.
Course Component: Seminar

EVD 5114 Professional Skills for Environmental Sustainability (1.5 unit)
Oral and written communications skills, including presenting to parliamentary committees, preparing memos to cabinet, writing editorials, doing media interviews, and producing interdisciplinary public policy reports. Project and process management skills, including multi-stakeholder processes.
Course Component: Seminar

EVD 5121 Foundations of Environmental Science (3 units)
Provides students with a thematic understanding of the current state of environmental science. Major themes include: the set of environmental issues that are currently of major concern in Canada and abroad; the range of scientific approaches currently employed to understand and predict the effects of human activities on ecosystems; the nature of environmental science evidence; and how environmental sustainability is characterized from the perspective of environmental science.
Course Component: Seminar

EVD 5122 Foundations of Environmental Economics (3 units)
Key elements of economics including formal models and their underlying assumptions as they relate to the development of sustainability policy. Covers concepts such as public goods, market failure, non-market valuation, incentives, welfare economics, regulation, the equity-efficiency trade-off and market-based instruments. The course explains how fundamental economic concepts, particularly their advantages and limitations, are used to analyze issues at the interface of the economy and the environment. Examines renewable (e.g., fisheries, forests) and non-renewable (e.g., oil, gas, minerals) resource management and other topics (e.g., climate change, ozone depletion, cap and trade) in applied environmental economics. Explores the institutions and trade-offs that individuals and governments face in the context of sustainability policy.
Course Component: Seminar

EVD 5123 Evidence Synthesis and Evaluation (3 units)
Reviews different understandings of what constitutes research, both as it pertains to the production of evidence and to the evaluation of existing evidence relating to policy, to regulatory and statutory interventions and to identifying evidence gaps. Students learn research methodologies to design research so as to maximize its evidentiary value (given existing constraints); they will also learn to synthesize and assess the evidentiary value of existing research.
Course Component: Seminar

EVD 5124 Foundations of Environmental Law (3 units)
Foundations of environmental law, including theory of sustainability, constitutional division of powers, approaches to regulation of environmental issues, including examples of legal frameworks for different environmental problems, and access to justice.
Course Component: Seminar

EVD 5500 Séminaire en durabilité de l’environnement (3 crédits)
Survol des enjeux en durabilité de l’environnement en se servant du changement climatique comme exemple. Application d’analyses intégrant des concepts en sciences, en droit, en science économique et en études politiques. Le débat au sujet de la preuve scientifique du changement climatique et les efforts sur le plan international pour négocier une entente. Les dimensions économiques, sociales et politiques du changement climatique et les mesures à ce jour pour atténuer ses effets, au niveau international et au niveau national.
Volet : Séminaire

EVD 5501 Approche économique et le droit de l’environnement (3 crédits)
Les enjeux environnementaux et le système de réglementation du point de vue de la science économique. Étude de la théorie qui sous-tend certains concepts économiques, tels l’efficacité, la défaillance du marché, les externalités et la valorisation. Survol des concepts macroéconomiques, tels la croissance économique et la comptabilité environnementale. Application de ces concepts théoriques aux défis environnementaux tels le changement climatique, la réglementation de l’énergie, la gestion des services écologiques et la conservation de la biodiversité. Les divers outils de réglementation pour la gestion des défis liés à l’environnement, incluant la réglementation traditionnelle de type « commande et contrôle », les moyens économiques tels que la taxation environnementale et les systèmes de droits d’échanges. Évaluation de l’efficacité environnementale, sociale et économique des diverses approches, et intégration de la théorie économique dans le développement de la réglementation environnementale.
Volet : Cours magistral

EVD 5509 Développement durable appliqué (3 crédits)
Étude de cas en développement durable (changements climatiques, par exemple) pour apprendre à synthétiser l’information sur un problème à partir de plusieurs perspectives disciplinaires, pour évaluer l’information selon un schéma critique, en faisant usage de méthodes rigoureuses, et pour concevoir et évaluer des politiques ou règlements.
Volet : Séminaire

EVD 5511 Séminaire d’intégration sur le développement durable (3 crédits)
Partenariat avec des organisations travaillant en développement durable. Les étudiants forment des équipes multidisciplinaires pour étudier les dimensions scientifiques, économiques, juridiques et sociales d’un problème environnemental particulier, pour évaluer un éventail de solutions possibles et pour recommander les mesures à prendre.
Volet : Cours magistral

EVD 5513 Rudiments des politiques environnementales (3 crédits)
Volet : Cours magistral

EVD 5514 Compétences professionnelles pour le développement durable (1.5 crédit)
Compétences orales et écrites en communication, notamment les présentations aux comités parlementaires, la préparation de mémoires au cabinet, la rédaction d’éditoriaux, les entrevues médiatiques et la production de rapports multidisciplinaires sur les politiques publiques. Gestion de projet et de processus faisant intervenir de nombreux joueurs.
Volet : Cours magistral

EVD 5521 Rudiments des sciences de l’environnement (3 crédits)
Donne aux étudiants une compréhension thématique de l’état actuel des sciences environnementales. Principaux thèmes : éventail des enjeux environnementaux d’importance au Canada et à l’étranger; les démarches scientifiques déployées pour comprendre et prédire les conséquences des activités humaines pour les écosystèmes; la nature des preuves apportées par les sciences de l’environnement; la perspective des sciences de l’environnement sur le développement durable.
Volet : Cours magistral
EVD 5522 Rudiments de l'économie de l'environnement (3 crédits)
Principaux éléments de l'économie, y compris les modèles économiques officiels et les présuppositions afférentes à l'élaboration de politiques de développement durable. Étude de divers concepts : patrimoine commun, échec des marchés, non évaluation des valeurs courantes; mesures incitatives; économie du bien-être; réglementation; équilibre entre équité et efficience; instruments reposant sur les mécanismes de marché. On examinera plus en détail les concepts fondamentaux de l'économie et leurs avantages et inconvenients pour l'examen des enjeux au carrefour de l'économie et de l'environnement. Étude de la gestion des ressources renouvelables (pêches, forêts, etc.) et non renouvelables (pétrole, gaz, minerai, etc.) et d'autres sujets en économie de l'environnement appliquée (ex. changements climatiques, destruction de la couche d'ozone, programmes de plafonnement et d'échange). Étude des institutions et programmes de compensation auxquels sont confrontés les individus et les gouvernements dans le contexte des politiques de développement durable.
Volet : Cours magistral

EVD 5523 Synthèse et évaluation de données probantes (3 crédits)
La recherche vise soit à produire des données probantes, soit à évaluer les données probantes existantes en ce qu'elles ont trait à des interventions politiques, réglementaires et étatiques, y compris les lacunes en la matière. Ainsi, les étudiants acquièrent les compétences nécessaires qui leur permettent de concevoir un programme de recherche de façon à en optimiser la valeur probante (en fonction des contraintes existantes) et de synthétiser les résultats de recherches existantes et d'évaluer leur valeur probante.
Volet : Cours magistral

EVD 5524 Rudiments du droit de l'environnement (3 crédits)
Rudiments du droit de l'environnement, y compris la théorie du développement durable, la division constitutionnelle des pouvoirs, les démarches visant à réglementer les questions environnementales, avec exemples de cadres légaux pour différents problèmes environnementaux et accès à la justice.
Volet : Séminaire

EVD 6001 Stage coop I / Co-Op Work Term I (6 crédits / 6 units)
Expérience en milieu de travail. Évalué P (réussite) / F (échec) par un professeur du programme selon les résultats du rapport écrit et l'évaluation du superviseur de stage. Préalable: permission du responsable des études supérieures. / Experience in workplace setting. Evaluated P (Pass) / F (Fail) by a professor in the program based on the written report and the evaluation of the internship supervisor.
Volet / Course Component: Stage / Work Term

EVD 6002 Stage coop II / Co-Op Work II (6 crédits / 6 units)
Expérience en milieu de travail. Évalué P (réussite) / F (échec) par un professeur du programme selon les résultats du rapport écrit et l'évaluation du superviseur de stage. Préalable: permission du responsable des études supérieures. / Experience in workplace setting. Evaluated P (Pass) / F (Fail) by a professor in the program based on the written report and the evaluation of the internship supervisor.
Volet / Course Component: Stage / Work Term

EVD 6112 Selected Topics in Environmental Sustainability (3 units)
In-depth examination of a question or topic linked to new trends or research areas in environmental sustainability.
Course Component: Lecture

EVD 6512 Thèmes choisis en durabilité de l'environnement (3 crédits)
Analyse approfondie d'une problématique ou d'une question liée aux nouvelles tendances en recherche ou aux nouveaux thèmes de recherche en durabilité de l'environnement.
Volet : Cours magistral

EVD 6912 Thèmes choisis en durabilité de l'environnement / Selected Topics in Environmental Sustainability (3 crédits / 3 units)
Analyse approfondie d'une problématique ou d'une question liée aux nouvelles tendances en recherche ou aux nouveaux thèmes de recherche en durabilité de l'environnement. / In-depth examination of a question or topic linked to new trends or research areas in environmental sustainability.
Volet / Course Component: Cours magistral / Lecture
Préalable : connaissance passive de l'anglais. / Prerequisite: passive knowledge of French

EVD 6932 Lectures dirigées en durabilité de l'environnement / Directed Readings in Environmental Sustainability (3 crédits / 3 units)
Cours individuel ayant pour objectif d'approfondir les connaissances de l'étudiant dans un domaine particulier ou de lui permettre de se familiariser avec un nouveau domaine. Le sujet est déterminé et développé en consultation avec le professeur responsable et en conformité avec les directives de l'Institut de l'environnement. Le travail remis dans ce cours doit être différent de ce qui a pu être soumis dans d'autres cours, y compris le projet de recherche, la thèse ou le mémoire. On permet un maximum d'un cours de lectures dirigées par étudiant et la permission n'est accordée que dans des circonstances exceptionnelles. / Individual course aimed at deepening a student’s knowledge of a particular area or at gaining knowledge of a new area. The topic is selected and developed in consultation with the supervising professor in accordance with institute guidelines. The work submitted for this course must be different from that submitted for other courses, including the research proposal, the thesis or the research paper. Maximum of one directed readings course per student, and permission is granted only under exceptional circumstances.
Volet / Course Component: Recherche / Research
Préalable: Connaissance passive de l'anglais. / Prerequisite: Passive knowledge of French.

EVD 6999 Mémoire / Research Paper (6 crédits / 6 units)
Volet / Course Component: Recherche / Research

EVD 7997 Projet de thèse / Thesis Proposal
Volet / Course Component: Recherche / Research

EVD 8100 Theory and Practice in Environmental Sustainability (3 units)
Characterization of environmental sustainability from the perspective of economics, political science, environmental science, and law. Demonstration of how often-divergent perspectives and values of stakeholders from various backgrounds frame both sustainability problems themselves, and acceptable solutions.
Course Component: Seminar

EVD 8500 Théorie et pratique en durabilité environnementale (3 crédits)
La caractérisation de la durabilité environnementale du point de vue de la science économique, de la science politique, de la science environnementale et du droit. Démonstration de comment les perspectives et les valeurs divergentes des parties prenantes de divers horizons définissent à la fois les problèmes et les solutions acceptables en durabilité.
Volet : Séminaire
EVD 8901 Conception de recherche et méthodologie pour la recherche en durabilité de l’environnement / Research Design and Methods for Environmental Sustainability (3 crédits / 3 units)
Vue d’ensemble des méthodes de recherche employées dans les quatre domaines principaux de la durabilité (science de l’environnement, droit, politique et économie). À l’aide d’études de cas, examen des types d’inferences causales que l’on peut ou ne peut pas tirer d’un plan de recherche, les menaces à la déduction valable et les plans de recherche pouvant atténuer ces menaces. Accent particulier sera mis sur la relation entre les conceptions de recherche et la force de l’inference causale. / Overview of research methods employed in the four main subject areas underlying sustainability (environmental science, law, policy and economics). Through case studies, examination of the kinds of causal inferences one can and cannot draw from a research design, threats to valid inference, and research designs that can mitigate those threats. Particular emphasis placed on the relationship between research designs and strength of causal inference.
Volet / Course Component: Séminaire / Seminar

EVD 9997 Examen d’entrée / Qualifying Examination
Examen d’entrée / Qualifying Examination
Volet / Course Component: Recherche / Research

EVD 9998 Projet de thèse / PhD Thesis Proposal
Projet de thèse / PhD Thesis Proposal
Volet / Course Component: Recherche / Research