DOCTORATE IN PHILOSOPHY
ENVIRONMENTAL ENGINEERING

Summary
• Degree offered: Doctorate in Philosophy (PhD)
• Registration status options: Full-time
• Language of instruction: English

Most of the courses in this program are offered in English. Research activities can be conducted in English, French, or both, depending on the language used by the professor and the members of his or her research group.

• Program option (expected duration of the program):
 • within four years
• Academic units: Faculty of Engineering (http://engineering.uottawa.ca/), Ottawa-Carleton Institute of Environmental Engineering (http://www.ociene.ca/).

Program Description
Ottawa-Carleton Joint Program

Established in 2000, the Ottawa-Carleton Institute of Environmental Engineering (OCIENE) combines the teaching and research strengths of the Department of Civil Engineering and the Department of Chemical Engineering at the University of Ottawa with that of the Department of Civil and Environmental Engineering at Carleton University.

The Institute offers graduate programs leading to the degrees of Master of Applied Science in Environmental Engineering (MASc), Master of Applied Science in Environmental Engineering (MASc) Specialization in Environmental Sustainability, a Master of Engineering (MEng) and Doctor of Philosophy (PhD) in Environmental Engineering.

Main Areas of Research
• Biofilms and biofilm technologies for water and wastewater treatment
• Drinking water: membrane treatment and climate change adaptation technologies
• Ecological engineering and agricultural waste management • Mining impacted water management
• Northern, rural and First Nation water and wastewater
• Sustainable municipal waste management, groundwater, and remediation technologies
• Water resources and management

Note: Further information is posted on the departmental website.

Learning Outcomes
• Autonomy in conducting research
• Autonomy in preparing scholarly publications

Other Programs Offered Within the Same Discipline or in a Related Area
• Master of Applied Science Environmental Engineering (MASc)
• Master of Applied Science Civil Engineering (MASc)
• Master of Applied Science Environmental Engineering Specialization Environmental Sustainability (MASc)
• Master of Applied Science Civil Engineering Specialization in Science, Society and Policy (MASc)
• Master of Engineering Environmental Engineering (MEng)
• Master of Engineering Civil Engineering (MEng)
• Doctorate in Philosophy Civil Engineering (PhD)

Fees and Funding
• Program fees:

 The estimated amount for university fees (https://www.uottawa.ca/university-fees/) associated with this program are available under the section Finance your studies (http://www.uottawa.ca/graduate-studies/programs-admission/finance-studies/).

 International students enrolled in a French-language program of study may be eligible for a differential tuition fee exemption (https://www.uottawa.ca/university-fees/differential-tuition-fee-exemption/).

• To learn about possibilities for financing your graduate studies, consult the Awards and financial support (https://www.uottawa.ca/graduate-studies/students/awards/) section.

Notes
• Programs are governed by the general regulations (http://www.uottawa.ca/graduate-studies/programs/graduate-studies/) in effect for graduate studies and by the general regulations of the Ottawa-Carleton Institute of Environmental Engineering (OCIENE).
• In accordance with the University of Ottawa regulation, students have the right to complete their assignments, examinations, research papers, and theses in French or in English.

Program Contact Information
Graduate Studies Office, Faculty of Engineering (https://engineering.uottawa.ca/graduate-studies-office/)

STE 1024
800 King Edward Ave.
Ottawa ON Canada
K1N 6N5

Tel.: 613-562-5347
Fax.: 613-562-5129
Email: engineering.grad@uottawa.ca

Twitter | Faculty of Engineering (https://twitter.com/uOttawaGenie/?lang=en)
Facebook | Faculty of Engineer (https://www.facebook.com/uottawa.engineering/)

Admission Requirements
For the most accurate and up to date information on application deadlines, language tests and other admission requirements, please visit

the specific requirements (https://www.uottawa.ca/graduate-studies/programs-admission/apply/specific-requirements/) webpage.

To be eligible, candidates must:

- Hold a master's degree in environmental engineering or in an engineering discipline with an environmental specialization with a minimum average of 75% (B+)

Note: International candidates must check the admission equivalencies (https://www.uottawa.ca/graduate-studies/international/study-uottawa/admission-equivalencies/) for the diploma they received in their country of origin.

- Demonstrate a good academic research performance.

- Identify at least one professor who is willing to supervise your research and thesis.
 - We recommend that you contact potential thesis supervisors as soon as possible.
 - To register, you need to have been accepted by a thesis supervisor.
 - The supervisor's name is required at the time of application.

Language Requirements

Applicants must be able to understand and fluently speak the language of instruction (French or English) in the program to which they are applying. Proof of linguistic proficiency may be required.

Applicants whose first language is neither French nor English must provide proof of proficiency in the language of instruction.

Note: Candidates are responsible for any fees associated with the language tests.

Notes

- The admission requirements listed above are minimum requirements and do not guarantee admission to the program.

- Admissions are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations/) in effect for graduate studies and by the general regulations of the Ottawa-Carleton Institute of Environmental Engineering (OCIENE).

- Research facilities are shared between the two campuses. Students have access to the professors, courses and facilities at both universities; however, the choice of research supervisor will determine the primary campus location of the student. It will also determine which university awards the degree.

Program Requirements

Requirements for this program have been modified. Please consult the 2019-2020 calendars (http://catalogue.uottawa.ca/en/archives/) for the previous requirements.

Candidates in the PhD program are expected to demonstrate a broad knowledge of the following areas within environmental engineering through coursework (undergraduate and graduate) already completed:

- Air pollution
- Water resources management, groundwater management and contaminant transport
- Water and wastewater treatment
- Management of solid, hazardous, and radioactive waste and pollution prevention
- Environmental impact assessment

The Department may require students to take additional courses, depending on their backgrounds.

Students must meet the following requirements:

Compulsory Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVG 5801</td>
<td>Seminar for Doctoral Candidates in Environmental Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Comprehensive Examination:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVG 9998</td>
<td>Thesis Proposal and Comprehensive Examination 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Thesis:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD 9999</td>
<td>Doctoral Thesis 2, 3</td>
<td></td>
</tr>
</tbody>
</table>

Note(s)

1. The comprehensive examination should be completed within the first 16 months (or the equivalent of four full-time terms) of the student's enrollment in the PhD program.
2. Presentation and defense of a thesis based on original research carried out under the direct supervision of a research faculty member in the Department.
3. Students are responsible for ensuring they have met all of the thesis requirements (http://www.uottawa.ca/graduate-studies/students/theses/).

List of Optional Courses

Course selection is subject to the approval of the advisor or the advisory committee. Students may choose courses offered at either university from among those listed below.

The courses listed below are grouped by area of study. Course descriptions may be found in the departmental sections of the calendars concerned.

Air Pollution

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHG 8132</td>
<td>Adsorption Separation Processes</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7101</td>
<td>Air Pollution Control Process</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7104</td>
<td>Indoor Air Quality</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7105</td>
<td>Atmospheric Aerosols</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7106</td>
<td>Atmospheric Chemical Transport Modelling</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7161</td>
<td>Traffic Related Air Pollution</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7162</td>
<td>Air Quality Modelling</td>
<td>3</td>
</tr>
</tbody>
</table>

Water Resources Management, Groundwater Management, and Contaminant Transport

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVG 5112</td>
<td>Computational Hydrodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CVG 5124</td>
<td>Coastal Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVG 5160</td>
<td>Sediment Transport</td>
<td>3</td>
</tr>
<tr>
<td>CVG 5162</td>
<td>River Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5125</td>
<td>Statistical Methods in Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5182</td>
<td>Water Resources Management</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5183</td>
<td>Mixing and Transport in Water Bodies</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVG 5301</td>
<td>Soil and Water Conservation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7163</td>
<td>Case Studies in Hydrogeology</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7301</td>
<td>Contaminant Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7303</td>
<td>Multiphase Flow in Soils</td>
<td>3</td>
</tr>
<tr>
<td>GEO 5143</td>
<td>Environmental Isotopes and Groundwater Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>GEO 5147</td>
<td>Aqueous Inorganic Geochemistry and Modelling</td>
<td>3</td>
</tr>
<tr>
<td>GEO 5153</td>
<td>Computer Techniques in the Earth Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CVG 5314</td>
<td>Geotechnical Hazards</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5133</td>
<td>Solid Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5179</td>
<td>Anaerobic Digestion</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5331</td>
<td>Sludge Utilization and Disposal</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7132</td>
<td>Sludge Treatment and Disposal</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7134</td>
<td>Resource Industry Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7164</td>
<td>Hazardous and radioactive Wastes</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7201</td>
<td>Geo-Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5001</td>
<td>Biofilm Processes in Wastewater Treatment</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5130</td>
<td>Wastewater Treatment Process Design</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5132</td>
<td>Unit Operations of Water Treatment</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5134</td>
<td>Chemistry for Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5137</td>
<td>Water and Wastewater Treatment Process Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5138</td>
<td>Advanced Water Treatment</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5302</td>
<td>Decentralized Wastewater Management</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7143</td>
<td>Advanced Ultraviolet Processes</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7144</td>
<td>Advanced Wastewater Treatment</td>
<td>3</td>
</tr>
<tr>
<td>CHG 8192</td>
<td>Membranes in Clean Processes</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5139</td>
<td>Environmental Assessment of Civil Engineering Projects</td>
<td>3</td>
</tr>
<tr>
<td>EVG 5212</td>
<td>Climate Change Impacts on Water Resources</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7200</td>
<td>Climate Change and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVG 7140</td>
<td>Statistics, Probabilities and Decision-Making</td>
<td>3</td>
</tr>
<tr>
<td>CHG 8194</td>
<td>Membrane Liquid Separation Processes and Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHG 8195</td>
<td>Advanced Numerical Methods in Chemical and Biological Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHG 8196</td>
<td>Interfacial Phenomena in Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 6108</td>
<td>Directed Studies I</td>
<td>3</td>
</tr>
<tr>
<td>EVG 6109</td>
<td>Directed Studies II</td>
<td>3</td>
</tr>
<tr>
<td>EVG 6300</td>
<td>Special Topics in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 6301</td>
<td>Special Topics in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 6302</td>
<td>Special Topics in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 6303</td>
<td>Special Topics in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 6304</td>
<td>Special Topics in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7001</td>
<td>Topics in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7002</td>
<td>Topics in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7003</td>
<td>Topics in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7004</td>
<td>Topics in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7005</td>
<td>Topics in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVG 7402</td>
<td>Finite Elements in Field Problems</td>
<td>3</td>
</tr>
<tr>
<td>GNG 5121</td>
<td>Taguchi methods for efficient Engineering RD</td>
<td>3</td>
</tr>
<tr>
<td>GNG 5122</td>
<td>Operational Excellence and Lean Six Sigma</td>
<td>3</td>
</tr>
</tbody>
</table>

Minimum Requirements

The passing grade in all courses is B.

Students who fail 6 units, or whose research progress is deemed unsatisfactory are required to withdraw from the program.

Transfer from Master’s to PhD

Master's students with outstanding performance in the master's courses may request transfer into the PhD program without completing the master's degree. Students who are permitted to do so must successfully complete a total of 24 course units (15 at the Master's and 9 at the PhD) for a PhD.

Research Fields & Facilities

Located in the heart of Canada's capital, a few steps away from Parliament Hill, the University of Ottawa is among Canada's top 10 research universities.

uOttawa focuses research strengths and efforts in four Strategic Areas of Development in Research (SADRs):

- Canada and the World
- Health
- e-Society
- Molecular and Environmental Sciences

With cutting-edge research, our graduate students, researchers and educators strongly influence national and international priorities.

Research at the Faculty of Engineering

Areas of research:

- Environmental Engineering
- Chemical and Biological Engineering
- Civil Engineering
- Electrical Engineering and Computer Science
- Mechanical Engineering

For more information, refer to the list of faculty members and their research fields on Uniweb.

IMPORTANT: Candidates and students looking for professors to supervise their thesis or research project can also consult the website of the faculty or department (https://www.uottawa.ca/graduate-studies/students/academic-unit-contact-information/) of their program of choice. Uniweb does not list all professors authorized to supervise research projects at the University of Ottawa.
Courses

Course selection is subject to the approval of the advisor or the advisory committee. Students may choose courses offered at either university from among those listed below.

The courses listed below are grouped by area of study. Students must complete at least one course in three of the five areas. The director will decide when a course offered under a special topics or directed studies heading can be considered to meet the requirements of a given area. Course descriptions may be found in the departmental sections of the calendars concerned. Only a selection of courses given in a particular academic year.

EVG 5001 Biofilm Processes in Wastewater Treatment (3 crédits / 3 units)

Volet / Course Component: Cours magistral / Lecture

EVG 5125 Statistical Methods in Hydrology (3 units)

Concepts of probability and random variables applied to hydrology. Statistical distributions, their approximation and analysis. Statistical inference, including tests of significance and estimation theory. Linear and multivariate correlation and regression techniques. Data generation and simulation techniques for design of water-resource systems. Introduction to hydrologic and meteorologic time series. This course is equivalent to CIVJ 5601 at Carleton University.

Course Component: Lecture

Previously CVG 5130.

EVG 5130 Wastewater Treatment Process Design (3 units)

The physical, chemical and biological processes involved in the treatment of domestic and industrial wastes. Waste characteristics, stream assimilation, biological oxidation, aeration, sedimentation, anaerobic digestion, sludge disposal. This course is equivalent to ENVJ 5900 at Carleton University.

Course Component: Lecture

Previously CVG 5132.

EVG 5132 Unit Operations of Water Treatment (3 units)

Unit operations and unit processes involved in the treatment of a water supply for various uses. Topics included are water quality, water microbiology, sedimentation, chemical treatment, disinfection, water chemistry, flocculation. This course is equivalent to ENVJ 5901 at Carleton University.

Course Component: Lecture

Previously CVG 5133.

EVG 5133 Solid Waste Management (3 units)

Collection and disposal of solid wastes. Sanitary landfill, composting, incineration and other methods of disposal. Material and energy recovery. This course is equivalent to ENVJ 5906 at Carleton University.

Course Component: Lecture

Previously CVG 5134.

EVG 5134 Chemistry for Environmental Engineering (3 units)

Dilute aqueous solution chemistry of water and wastewater treatment. Chemical kinetics and equilibrium. Carbonate, phosphate and chlorine chemistry. Precipitation and complex formation. Corrosion. Analytical techniques and applications. This course is equivalent to ENVJ 5907 at Carleton University.

Course Component: Lecture

Previously CVG 5137.

EVG 5137 Water and Wastewater Treatment Process Analysis (3 units)

Mass balancing in complex systems. Reaction kinetics and kinetic data analysis: classical and computer based methods. Reactor design: ideal reactors and real reactors. Analysis of tracer tests. Interfacial mass transfer: common theories. Mass transfer models. This course is equivalent to ENVJ 5905 at Carleton University.

Course Component: Lecture

Previously CVG 5138.

EVG 5138 Advanced Water Treatment (3 units)

Scope, limitations and design procedures for water treatment processes for the removal of toxic and non-standard contaminants. Current water treatment problems and regulations, activated carbon treatment, ion exchange, disinfection practices and oxidation via advanced oxidation processes (ozonation and UV oxidation), iron and manganese removal, recent developments in coagulation, membranes, air stripping. This course is equivalent to ENVJ 5902 at Carleton University.

Course Component: Lecture

Previously CVG 5139.

EVG 5139 Environmental Assessment of Civil Engineering Projects (3 units)

Procedures and methods for systematic evaluation of the environmental impact of civil engineering projects including wastewater disposal systems, solid waste disposal systems, and water resource development systems. This course is equivalent to ENVJ 5700 at Carleton University.

Course Component: Lecture

Previously CVG 5137.

EVG 5137 Water and Wastewater Treatment Process Analysis (3 units)

Mass balancing in complex systems. Reaction kinetics and kinetic data analysis: classical and computer based methods. Reactor design: ideal reactors and real reactors. Analysis of tracer tests. Interfacial mass transfer: common theories. Mass transfer models. This course is equivalent to ENVJ 5905 at Carleton University.

Course Component: Lecture

Previously CVG 5137.

EVG 5138 Advanced Water Treatment (3 units)

Scope, limitations and design procedures for water treatment processes for the removal of toxic and non-standard contaminants. Current water treatment problems and regulations, activated carbon treatment, ion exchange, disinfection practices and oxidation via advanced oxidation processes (ozonation and UV oxidation), iron and manganese removal, recent developments in coagulation, membranes, air stripping. This course is equivalent to ENVJ 5902 at Carleton University.

Course Component: Lecture

Previously CVG 5138.

EVG 5139 Environmental Assessment of Civil Engineering Projects (3 units)

Procedures and methods for systematic evaluation of the environmental impact of civil engineering projects including wastewater disposal systems, solid waste disposal systems, and water resource development systems. This course is equivalent to ENVJ 5700 at Carleton University.

Course Component: Lecture

Previously CVG 5139.

EVG 5179 Anaerobic Digestion (3 units)

Advanced theoretical, biological, and practical aspects of anaerobic digestion processes. Principles to be applied to the design and application of conventional and advanced anaerobic processes used for treatment of municipal and industrial wastewaters. Topics to include microbiology and biochemistry fundamentals, techniques for monitoring anaerobic digestion performance, municipal sludge stabilization, anaerobic composting, anoxic/anaerobic bioremediation, Andrew’s dynamic model. Design of the following: two-phase digestion; Downflow Stationary Fixed Film (DSFF) reactors; Upflow Anaerobic Sludge Blanket (UASB); Upflow Blanket Filter (UBF) reactors; and Anaerobic Sequencing Batch Reactors (ASBR). This course is equivalent to ENVJ 5908 at Carleton University.

Course Component: Lecture

Previously CVG 5179.

EVG 5182 Water Resources Management (3 units)

Global water supply and demand; Integrated water resources management; Modeling and optimization of water resources systems; Reservoir Management; Uncertainty modeling; Climate Change and water; Decision under uncertainty.

Course Component: Lecture

Previously CVG 5182.

EVG 5183 Mixing and Transport in Water Bodies (3 units)

Typical models for selected water resources systems: Rivers, lakes, estuaries; Water quality parameters; Conservative parameters; Non conservative parameters; Laminar and turbulent flows; Dispersion; Pollution sources; Modeling: Simplified (integral) models; Dilution models; Three Dimensional models; Advection-Diffusion Equation; Analytical solution; Numerical solution; Non-conservative transport and Multi-component systems; Modeling approaches based on conservative and non-conservative transport and kinetics; Certain water quality parameters (Temperature, Salinity, etc.).

Course Component: Lecture

Previously CVG 5183.

EVG 5184 Hydrodynamics (3 units)

Hydrostatics and hydrodynamics of real fluids; Continuum Theory of fluids; Pulsating flows; Inviscid fluids, compressible and non compressible. Design of the following: two-phase flow; Downflow Stationary Fixed Film (DSFF) reactors; Upflow Anaerobic Sludge Blanket (UASB); Upflow Blanket Filter (UBF) reactors; and Anaerobic Sequencing Batch Reactors (ASBR). This course is equivalent to ENVJ 5908 at Carleton University.

Course Component: Lecture

Previously CVG 5184.
EVG 5203 Hazardous and Radioactive Waste Management (3 units)
This course is equivalent to ENVE 5203 at Carleton University.
Course Component: Lecture

EVG 5212 Climate Change Impacts on Water Resources (3 units)
Spatiotemporal distribution of water and its impact on human activities, including domestic and municipal consumption, hydropower generation, rain-fed and irrigated agriculture, design and operation of sewer systems, floodplain zoning, navigation, etc. Critical assessment of methodologies for climate change impacts estimation. Theoretical knowledge and hands-on application experience needed to perform climate change analysis on a water resources system.
Course Component: Lecture

EVG 5301 Soil and Water Conservation Engineering (3 units)
The design, water quality and climate change impacts of soil and water conservation systems. Topics include: urban storm water management (including LID) erosion control practices, subsurface and surface drainage systems and irrigation technologies.
Course Component: Lecture

EVG 5302 Decentralized Wastewater Management (3 units)
This course covers fundamental principles and practical design applications of decentralized wastewater treatment for domestic and industrial sources. Topics include: management of decentralized wastewater systems, pre-treatment systems, soil infiltration systems, advanced onsite technologies, constructed wetlands, alternative collection systems, wastewater reuse and septage management.
Course Component: Lecture

EVG 5331 Sludge Utilization and Disposal (3 units)
Introduction to sludge processing technology and procedures to be used in the planning and design of sludge treatment processes. Evaluate the economics and performance of sludge unit process operations. Selection of methods for the final disposition of sludge. This course is equivalent to ENVJ 5902 at Carleton University.
Course Component: Lecture

EVG 5333 Research Methodology (3 units)
Key components and strategies required to build a robust scientific research program in environmental engineering including research questions, literature review, experiment design, data interpretation, scientific manuscripts, public speaking, ethics, and plagiarism.
Course Component: Lecture

EVG 5800 Seminar for Master's Candidates in Environmental Engineering (1 crédit)
Ce cours est équivalent à ENVE 5800 à la Carleton University.
Volet : Recherche

EVG 5801 Seminar for Doctoral Candidates in Environmental Engineering (3 crédits)
Ce cours est équivalent à ENVE 7800 à la Carleton University.
Volet : Recherche

EVG 6001 Projet en génie de l'environnement / Environmental Engineering Project (6 crédits / 6 units)
Ce cours est équivalent à ENVE 5900 à la Carleton University. / This course is equivalent to ENVE 5900 at Carleton University.
Volet / Course Component: Recherche / Research

EVG 6108 Directed Studies I (3 units)
This course is equivalent to ENVE 5906 at Carleton University.
Course Component: Research

EVG 6109 Directed Studies II (3 units)
This course is equivalent to ENVE 5907 at Carleton University.
Course Component: Research

EVG 6300 Special Topics in Environmental Engineering (3 units)
Course Component: Lecture

EVG 6301 Special Topics in Environmental Engineering (3 units)
This course is equivalent to ENVE 5701 at Carleton University.
Course Component: Lecture

EVG 6302 Special Topics in Environmental Engineering (3 units)
This course is equivalent to ENVE 5702 at Carleton University.
Course Component: Lecture

EVG 6303 Special Topics in Environmental Engineering (3 units)
Course Component: Lecture

EVG 6304 Special Topics in Environmental Engineering (3 units)
Course Component: Lecture

EVG 6508 Études dirigées I (3 crédits)
Volet : Cours magistral

EVG 6509 Études dirigées II (3 crédits)
Volet : Cours magistral

EVG 7001 Topics in Environmental Engineering (3 crédits / 3 units)
This course is equivalent to ENVE 5701 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

EVG 7002 Topics in Environmental Engineering (3 crédits / 3 units)
This course is equivalent to ENVE 5702 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

EVG 7003 Topics in Environmental Engineering (3 crédits / 3 units)
This course is equivalent to ENVE 5703 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

EVG 7004 Topics in Environmental Engineering (3 crédits / 3 units)
This course is equivalent to ENVE 5704 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

EVG 7005 Topics in Environmental Engineering (3 crédits / 3 units)
This course is equivalent to ENVE 5705 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

EVG 7101 Air Pollution Control Process (3 units)
Course Component: Lecture
Previously CVG 7101.

EVG 7104 Indoor Air Quality (3 units)
This course is equivalent to ENVE 5104 at Carleton University.
Course Component: Lecture

EVG 7105 Atmospheric Aerosols (3 units)
Atmospheric aerosol characterization and size distribution, theoretical fundamentals of physical and chemical processes that govern formation and transformation of aerosols in the atmosphere such as nucleation, coagulation, condensation/evaporation, and aerosol thermodynamics; interactions between aerosols and climate, aerosol sampling and measurement. This course is equivalent to ENVE 5105 at Carleton University.
Course Component: Lecture
EVG 7106 Atmospheric Chemical Transport Modelling (3 units)
Fundamentals of Eulerian atmospheric modelling; overview of global and regional atmospheric models, basic principles of numerical methods used in air quality models; applications of air quality models; uncertainty and sensitivity analysis in air quality modelling. This course is equivalent to ENVE 5106 at Carleton University.
Course Component: Lecture

EVG 7132 Sludge Treatment and Disposal (3 units)
Aspects of sludge treatment, management, and disposal; sludge generation and characterization, thickening, preliminary treatment processes, aerobic and anaerobic digestion, lime stabilization, conditioning, dewatering, composting, land application and other disposal options, and thermal processes. This course is equivalent to ENVE 5205 at Carleton University.

Course Component: Lecture

EVG 7134 Resource Industry Waste Management (3 units)
Application of geotechnique and hydraulics to management of resource extraction residuals such as tailings, waste rock, and sludge from hard rock mines and bitumen extraction operations. Geotechnique of conventional and high density tailings disposal. Pipeline transport of concentrated suspensions. Closure technologies for mine waste impoundments. This course is equivalent to ENVE 5204 at Carleton University.

Course Component: Lecture

EVG 7143 Advanced Ultraviolet Processes (3 units)
Fundamentals and applications of ultraviolet (UV) light-based processes for water and wastewater treatment; principles of photochemistry and photobiology, methods of UV dose determination, UV disinfection of microorganisms, advanced oxidation processes, and design of UV disinfection systems and reactors. This course is equivalent to ENVE 5003 at Carleton University.

Course Component: Lecture

EVG 7144 Advanced Wastewater Treatment (3 units)
Fundamentals, applications, and design of biological, physical, and chemical treatment processes employed for advanced treatment of domestic and industrial wastewater. Reuse applications and guidelines. This course is equivalent to ENVE 5004 at Carleton University.

Course Component: Lecture

EVG 7161 Traffic Related Air Pollution (3 units)
Pollutant formation, emission characterization, emission control technology and emission modeling from motor vehicles. Dispersion and receptor modeling for conservative pollutants in urban microenvironments. Personal exposure and health risk assessment.

Course Component: Lecture
Previously CVG 7161.

EVG 7162 Air Quality Modelling (3 units)
Dispersion modeling for simple and complex sources and complex terrain. Physical and chemical transformations for pollutants in the atmosphere. Urban and regional air pollution modeling for reactive pollutants. The urban air shed model. Regional air quality modeling case studies.

Course Component: Lecture
Previously CVG 7162.

EVG 7163 Case Studies in Hydrogeology (3 units)
Development of a conceptual model; chemistry, geology and hydrology, site characterization, initial and boundary conditions. Application of industry-recognized computer codes to model flow and contaminant transport at a particular site. Evaluation of remedial alternatives at a site. Modeling of the more common remediation technologies. This course is equivalent to ENVE 5302 at Carleton University.

Course Component: Lecture

EVG 7164 Hazardous and radioactive Wastes (3 units)
Classification of hazardous, radioactive and mixed wastes, hazardous waste treatment processes, wastes generated in the nuclear fuel cycle, radioactive waste classification, radioactive waste treatment and management of residuals, engineered systems for long-term isolation and disposal, mixed waste management. This course is equivalent to ENVE 5303 at Carleton University.

Course Component: Lecture

EVG 7200 Climate Change and Engineering (3 units)
This course will cover broad environmental and climate change issues affecting engineered systems.

Course Component: Lecture

EVG 7201 Geo-Environmental Engineering (3 units)
This course is equivalent to ENVE 5201 at Carleton University.

Course Component: Lecture

EVG 7202 Contaminant Fate Mechanisms (3 units)
This course is equivalent to ENVE 5202 at Carleton University.

Course Component: Lecture

EVG 7301 Contaminant Hydrology (3 units)
This course is equivalent to ENVE 5301 at Carleton University.

Course Component: Lecture

EVG 7303 Multiphase Flow in Soils (3 units)
This course is equivalent to ENVE 5303 at Carleton University.

Course Component: Lecture

EVG 7401 Environmental Impact Assessment of Major Projects (3 units)
This course is equivalent to ENVE 5401 at Carleton University.

Course Component: Lecture

EVG 7402 Finite Elements in Field Problems (3 units)
This course is equivalent to ENVE 5402 at Carleton University.

Course Component: Lecture

EVG 9998 Proposition de thèse et examen de synthèse / Thesis Proposal and Comprehensive Examination

Volet / Course Component: Recherche / Research