DOCTORATE IN PHILOSOPHY
EARTH SCIENCES

Summary
• Degree offered: Doctorate in Philosophy (PhD)
• Registration status option: Full-time
• Language of instruction: English
• Program option (expected duration of the program):
 • with thesis (12 full-time terms; 48 consecutive months)
• Academic units: Faculty of Science (http://science.uottawa.ca),
 Department of Earth and Environmental Sciences (http://
 science.uottawa.ca/earth), Ottawa-Carleton Geoscience Centre
 (http://science.uottawa.ca/earth/ocgc-institute).

Program Description
Ottawa-Carleton Geoscience Centre
Established in 1982, the Ottawa-Carleton Geoscience Centre (OCGC)
combines the research strengths of the University of Ottawa and Carleton
University. The Centre offers graduate programs leading to the master's
(MSc) and doctoral (PhD) degrees in Earth sciences.

Research facilities are shared between the two campuses. Students
have access to the professors, courses and facilities at both universities;
however, they must enroll at the "home university" of the thesis
supervisor.

The Centre is one of the participating units in the collaborative program
in chemical and environmental toxicology (at the master's and doctoral
levels) and in environmental sustainability (at master's level).

Main Areas of Research
• Environmental geoscience
• Geochemistry
• Petrology
• Geomathematics
• Geomatics
• Mineral resources studies
• Sedimentary systems
• Tectonics
• Geophysics

Other Programs Offered Within the Same
Discipline or in a Related Area
• Master of Science Earth Sciences (MSc)
• Master of Science Earth Sciences Specialization in Chemical and
 Environmental Toxicology (MSc)
• Master of Science Earth Sciences Specialization in Environmental
 Sustainability (MSc)
• Master of Science Earth Sciences Specialization in Science, Society
 and Policy (MSc)
• Doctorate in Philosophy Earth Sciences Specialization in Chemical
 and Environmental Toxicology (PhD)

Fees and Funding
• Program fees:
 The estimated amount for university fees (https://www.uottawa.ca/
 university-fees) associated with this program are available under
 the section Finance your studies (http://www.uottawa.ca/graduate-
 studies/programs-admission/finance-studies).

 International students enrolled in a French-language program
 of study may be eligible for a differential tuition fee exemption
 (https://www.uottawa.ca/university-fees/differential-tuition-fee-
 exemption).

 To learn about possibilities for financing your graduate studies,
 consult the Awards and financial support (https://www.uottawa.ca/
 graduate-studies/students/awards) section.

Notes
• Programs are governed by the general regulations (http://
 www.uottawa.ca/graduate-studies/students/general-regulations) in
 effect for graduate studies at each of the two universities.

• In accordance with the University of Ottawa regulation, students
 have the right to complete their assignments, examinations, research
 papers, and theses in French or in English. Research activities can
 be conducted either in English, French or both, depending on the
 language used by the professor and the members of his or her
 research group.

Program Contact Information
Graduate Studies Office, Faculty of Science (https://science.uottawa.ca/en/faculty-services/graduate-studies)
30 Marie-Curie Street, Gendron Hall, Room 181
Ottawa, Ontario, Canada
K1N 6N5
Tel.: 613-562-5800 x3145
Email: gradsci@uOttawa.ca

Twitter | Faculty of Science (https://twitter.com/uOttawaScience?lang=en)
Facebook | Faculty of Science (https://www.facebook.com/uOttawaScience)

Admission Requirements
For the most accurate and up to date information on application deadlines, language tests and other admission requirements, please visit the specific requirements (https://www.uottawa.ca/graduate-studies/programs-admission/apply/specific-requirements) webpage.

To be eligible, candidates must:
• Have a master’s degree in earth sciences (or equivalent) with a minimum average of 75% (B+).

 Note: International candidates must check the admission equivalencies (https://www.uottawa.ca/graduate-studies/international/study-uottawa/admission-equivalencies) for the diploma they received in their country of origin.

• Demonstrate a good academic performance in previous studies as shown by official transcripts, research reports, abstracts or any other documents demonstrating research skills.

• Meet the funding requirements.

 Note: International students must provide proof of financial support: i.e., a stipend provided by a supervisor as well as a combination of awards and/or trust funds.

• Identify at least one professor who is willing to supervise your research and thesis.

 • We recommend that you contact potential thesis supervisors as soon as possible.
 • To register, you need to have been accepted by a thesis supervisor.
 • The supervisor’s name is required at the time of application.
 • The choice of supervisor will determine the primary campus location of the student. It will also determine which university awards the degree.

Language Requirements
Applicants must be able to understand, write and fluently speak the language of instruction (English) in the program to which they are applying. Proof of linguistic proficiency may be required.

Applicants whose first language is neither French nor English must provide proof of proficiency in the language of instruction.

Note: Candidates are responsible for any fees associated with the language tests.

Notes
• The admission requirements listed above are minimum requirements and do not guarantee admission to the program.
• Admissions are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations) in effect for graduate studies and by the general regulations of the Ottawa-Carleton Geoscience Centre (OCGC).

Fast-Track from Master’s to PhD
Students enrolled in the master’s program in Earth Sciences at the University of Ottawa may be eligible to fast-track directly into the doctoral program without writing a master’s thesis, provided the following conditions are met:

• Achievement of an A- average in the last two years of undergraduate studies;
• Completion of two graduate courses (six units) with a grade of A- or better in each;
• Satisfactory progress in the research program;
• Written recommendation by the supervisor and the advisory committee;
• Approval by the graduate studies committee.

Notes:
• The transfer to the PhD must take place within sixteen months of initial enrollment in the master’s.
• Following the transfer, all the requirements of the doctoral program must be met: six units of coursework in addition to the six already completed, the comprehensive exam (to be completed within 12 months of transfer), participation in the geoscience seminar series, and the thesis.

Program Requirements
Doctorate
The Department may require students to take additional courses, depending on their backgrounds.
Students must meet the following requirements:

Compulsory Courses:
6 optional course units in Earth sciences (GEO) at the graduate level

Comprehensive Examination:
GEO 9998 Comprehensive Examination (Ph.D.)

Thesis:
THD 9999 Doctoral Thesis

Note(s)
1. The optional course units may also be selected from related disciplines approved by the Department of Earth Sciences.
2. The comprehensive examination must be successfully completed within twelve months of the initial admission into the program.
3. Presentation and successful defense of a thesis based on original research carried out under the direct supervision of a faculty member of the Department.
4. Students are responsible for ensuring they have met all of the thesis requirements (http://www.uottawa.ca/graduate-studies/students/theses).

Minimum Requirements
The passing grade in all courses is B.

Students who fail two courses (equivalent to 6 units), the thesis proposal, or the comprehensive exam or whose research progress is deemed unsatisfactory are required to withdraw.

Research

Research Fields & Facilities
Located in the heart of Canada’s capital, a few steps away from Parliament Hill, the University of Ottawa is among Canada’s top 10 research universities.

uOttawa focuses research strengths and efforts in four Strategic Areas of Development in Research (SADRs):

- Canada and the World
- Health
- e-Society
- Molecular and Environmental Sciences

With cutting-edge research, our graduate students, researchers and educators strongly influence national and international priorities.

Research at the Faculty of Science
The Faculty of Science has become a true centre of excellence in research through its world-class professors as well as its programs and infrastructure in Biology, Chemistry, Earth Sciences, Mathematics and Statistics, and Physics.

The research accomplished by its 140 internationally recognized professors, its approximately 400 graduate students and its dozens of postdoctoral researchers and visiting scientists has positioned the Faculty of Science as one of the most research intensive science faculties in Canada. Our professors have received many international and national awards including three NSERC Gerhard Herzberg Gold Medal winners and numerous Fellows of the Royal Society of Canada.

The Faculty of Science, through its strategic use of infrastructure programs, hosts world-class Core Facilities and is at the leading edge for the study of Catalysis, Experimental and Computational Chemistry, Environmental Toxins, Nuclear Magnetic Resonance, Isotope Analysis, Molecular Biology and Genomics, X-Ray Spectrometry/Diffraclactometry, Geochemistry, Mass Spectrometry, Physiology and Genetics of Aquatic Organisms, and Photonics. The Faculty is also associated with the Fields Institute for research in mathematical science and the Centre de recherche mathématiques (CRM) at the Université de Montréal, providing a unique setting for mathematical research.

For more information, refer to the list of faculty members and their research fields on Uniweb.

Courses
Not all of the listed courses are given each year. The course is offered in the language in which it is described.

A 3-unit course at the University of Ottawa is equivalent to a 0.5-unit course at Carleton University.

GEO 5114 Mineralogy (3 units)
An advanced course covering selected topics in mineralogy, such as crystallography, crystal chemistry, crystal structure, mineralogy of rock-forming mineral groups, and instrumental methods in mineralogical research, such as use of electronic optical instruments, spectroscopy, and X-ray crystallography; seminar presentations and practical exercises included. This course is equivalent to ERTH 5104 at Carleton University.

Course Component: Lecture

GEO 5115 Thermodynamics, Kinetic Theory and Metamorphic Petrology (3 units)
Phase equilibria, phase diagrams, and the kinetics of mineral reactions; mass transfer, regional and global aspects of metamorphic, petrogenesis. Course may include one or two weeks of field-based instruction with costs borne by students. This course is equivalent to ERTH 5105 at Carleton University.

Course Component: Lecture

GEO 5122 Advanced Igneous Petrology (3 units)
The course focuses on particular aspects of the discipline and integrates physical and chemical processes with the dynamics of magmatic systems to understand igneous processes. This course is equivalent to ERTH 5202 at Carleton University.

Course Component: Lecture

GEO 5124 Geology and Geochemistry of Ore Deposits (3 units)
An advanced course in ore deposits examining aspects of their geology, geochemistry, and exploration. Topics will be selected from a range of different deposit types, including hydrothermal and magmatic ore deposits, as well as laboratory and field examination of different ores and their host rocks. This course is equivalent to ERTH 5204 at Carleton University.

Course Component: Lecture

GEO 5125 Natural Hazards in Canada - Risk and Impacts (3 units)
Overview of natural hazards and severe weather phenomena in Canada. Notions of risk, return period and probability of occurrence of natural disasters. Impact on society and infrastructure. Mitigation policies and strategies. This course is equivalent to ERTH 5215 at Carleton University.
Course Component: Lecture

GEO 5131 Siliciclastic Sedimentology (3 units)
Origin and significance of physical and sedimentary processes and structures. Analysis of ancient siliciclastic depositional environments in a facies model and sequence stratigraphic framework. Course involves lectures, seminars and field excursions. This course is equivalent to ERTH 5301 at Carleton University.
Course Component: Lecture

GEO 5135 Carbonate Sedimentology (3 units)
Aspects of modern depositional systems, dynamic facies models, sequence stratigraphy, mineralogy, and diagenesis of carbonate sediments. The practical part of the course will consist of a field-laboratory project that integrates various techniques in carbonate sedimentology (mapping, petrography, staining, cathodoluminescence, fluorescence, SEM). This course is equivalent to ERTH 5305 at Carleton University.
Course Component: Lecture

GEO 5136 Paleobiology (3 units)
Extinctions, micro- and macro-evolutionary processes, long-term trends and cycles in the Phanerozoic; functional morphology; application of invertebrates to biostratigraphy, paleoenvironmental and paleobiology. May include one or two weeks of field-based instruction with costs borne by the student. This course is equivalent to ERTH 5306 at Carleton University.
Course Component: Lecture

GEO 5137 Evolutionary Developmental Biology (3 units)
Explores the mechanistic basis of organismic evolution from genetic, morphogenetic and epigenetic perspectives, within a phylogenetic context of living and extinct vertebrates. Lectures two hours a week and a laboratory of three hours a week. This course is equivalent to ERTH 5307 at Carleton University.
Course Component: Lecture

GEO 5138 Advanced Micropaleontology (3 units)
Paleobiology, biostratigraphy and paleoecology of microfossils in the context of paleoecography, paleoecology and paleoecosystem. Course may involve a field trip with costs to be paid by students. This course is equivalent to ERTH 5308 at Carleton University.
Course Component: Laboratory

GEO 5143 Environmental Isotopes and Groundwater Geochemistry (3 units)
Geochemistry and environmental isotopes in studies of groundwater dynamics, age and contaminant hydrogeology. Environments from shallow groundwater and surface water to deep crustal brines are examined. Low temperature aqueous geochemistry and mineral solubility with emphasis on the carbonate system. This course is equivalent to ERTH 5403 at Carleton University.
Course Component: Lecture

GEO 5144 Isotope Mapping and Provenance Applications (3 units)
Isotopes are used to trace provenance of organic and inorganic materials. This course will discuss how traditional isotope systems vary in the environment at different spatiotemporal scales and how mapping their variations can solve problems in hydrology, climatology, ecology, and archeology. This course is equivalent to ERTH 5414 at Carleton University.
Course Component: Lecture

GEO 5145 Radioisotope Geochemistry Methods (3 units)
Overview of the basic principles of radiochemistry and examination of the occurrence, sources and production of radionuclides in the earth system that have been used extensively in environmental and geochemical studies. Discussion of and practice using the key methods of radionuclide detection. Equivalent to course ERTH 5405 at Carleton University.
Course Component: Lecture

GEO 5147 Aqueous Inorganic Geochemistry and Modelling (3 units)
Covers concepts in aqueous geochemistry including ion hydration and hydrolysis, aqueous activity, complexation, mineral solubility, carbonate system, redox, adsorption/surface complexation and reaction kinetics. Bi-weekly assignments provide an introduction to equilibrium geochemical modelling. This course is equivalent to ERTH 5407 at Carleton University.
Course Component: Lecture

GEO 5149 Reactive Transport Modelling (3 units)
Introduction to the theory of numerical models and application of reactive transport models in hydrogeology. Focus will be on development of appropriate conceptual models of flow, transport and bi- and geochemical reactions and simulation of these conceptual models using reactive transport codes. This course is equivalent to ERTH 5409 at Carleton University.
Course Component: Lecture

GEO 5151 Precambrian Geology (3 units)
Geology of the main Archean cratons and Proterozoic belts with emphasis on North America. Formation of the Earth, composition and evolution of the crust and mantle during the first 4 billion years of Earth's history, from its formation to the end of the Proterozoic. This course is equivalent to ERTH 5501 at Carleton University.
Course Component: Lecture

GEO 5153 Computer Techniques in the Earth Sciences (3 units)
A practical course for mapping; quantitative analysis, integration and modeling of spatial data related to geosciences and engineering applications using a combination of GIS, statistical and geostatistical analysis techniques. This course is equivalent to ERTH 5503 at Carleton University.
Course Component: Lecture

GEO 5155 Climate Change (3 units)
Considers climate changes and their driving mechanisms over a broad range of timescales based on observations from geological archives and more recent instrumented evidence. Future climate projections and their accuracy are also considered. This course is equivalent to ERTH 5505 at Carleton University.
Course Component: Lecture

GEO 5157 Tectonic Processes Emphasizing Geochronology and Metamorphism (3 units)
Applications of empirical, analytical and quantitative techniques to problems in regional geology and crustal tectonics; orogenic processes; heat and metamorphism; isotopic geochronology as applied to thermal history. This course is equivalent to ERTH 5507 at Carleton University.
Course Component: Lecture

GEO 5160 Chemistry of the Earth (3 units)
Examines the composition of the mantle and crust in selected tectonic settings, such as subduction zones and hot spots. Topics may include how geochemical data constrain geodynamic settings of study area. This course is equivalent to ERTH 5600 at Carleton University.
Course Component: Lecture
GEO 5163 Stable Isotope Geochemistry (3 units)
Mechanisms of isotope fractionation, fractionation in nature; physical and chemical isotope fractionation, kinetic isotope effects. Variations of stable isotope ratios (hydrogen, carbon, oxygen and sulphur) in nature. Preparation techniques of natural samples for isotope analysis. Applications of stable isotopes to study magma genesis, ore genesis, nature of water and formation fluids and sedimentary environments. This course is equivalent to ERTH 5603 at Carleton University.
Course Component: Lecture

GEO 5169 Radiogenic Isotope Geochemistry (3 units)
Radiogenic isotope systematics applied to the solid Earth and their use to understand various geological processes. Evolution of large-scale isotopic reservoirs throughout Earth's history. Application of different radiometric dating techniques, assessment of geochronological data, models and interpretations. This course is equivalent to ERTH 5609 at Carleton University.
Course Component: Lecture

GEO 5171 Physics of the Earth (3 units)
The physics and dynamics of the solid Earth: seismology; gravitational and magnetic fields; thermal state. Geophysical constraints on the structure and composition of the interior. Geodynamic processes. This course is equivalent to ERTH 5701 at Carleton University.
Course Component: Lecture

GEO 5173 Structural Geology (3 units)
Deformation processes and the analysis of geological structures at all scales. This course is equivalent to ERTH 5703 at Carleton University.
Course Component: Lecture

GEO 5174 Tectonics (3 units)
Dynamical and geological aspects of plate tectonics throughout Earth history. This course is equivalent to ERTH 5704 at Carleton University.
Course Component: Lecture

GEO 5177 Engineering Seismology (3 units)
Seismological topics with engineering applications. Characterization of seismicity and seismic sources (areas and faults). Seismic hazard analysis. Empirical and theoretical modeling of strong ground motion in time and frequency domains. This course is equivalent to ERTH 5707 at Carleton University.
Course Component: Lecture

GEO 5178 Geophysical Signal Processing (3 units)
Practical aspects of earthquake and other geophysical signal processing; focus on application of Fourier analysis, digital filters, instrument response. This course is equivalent to ERTH 5708 at Carleton University.
Course Component: Lecture

GEO 5191 Research Topics in Earth Sciences (3 units)
Directed reading/field/laboratory studies unrelated to thesis research, under the guidance of directors other than the thesis supervisor. A written proposal including research plan, deliverables, and evaluation must be submitted for departmental approval prior to registration. Written report required. This course is equivalent to ERTH 5901 at Carleton University.
Course Component: Research

GEO 5193 Field Studies (3 units)
Field investigations, unrelated to thesis research, not under the guidance of the thesis supervisor. Minimum of ten days field work, plus library/lab research. Individual projects require an approved research plan, deliverables, and evaluation scheme prior to registration. Field costs may be borne by the student. This course is equivalent to ERTH 5903 at Carleton University.
Course Component: Research

GEO 5301 Seminars in Earth Sciences (3 units)
Covers a spectrum of Earth Sciences topics and research problems, ranging from the solid Earth to its surface environment and climate. A strong discussion component and has the primary aims of exposing students to current research problems and improving their communications skills (oral and written). This course is equivalent to ERTH 5001 at Carleton University.
Course Component: Seminar

GEO 5306 Hydrothermal Ore Deposits (3 units)
An advanced course in economic geology related to hydrothermal ore deposits, including their geology and geochemistry, physical and chemical controls on hydrothermal mineralization, the recognition and characterization of ore-fluid reservoirs, and the nature of large-scale fluid flow and alteration, with an emphasis on applications to exploration. This course is equivalent to ERTH 5206 at Carleton University.
Course Component: Lecture

GEO 9998 Examen de synthèse (doctorat) / Comprehensive Examination (Ph.D.)
L'examen de synthèse comprend une proposition de thèse et un examen oral dans trois domaines de spécialisation différents. Cet examen doit être passé dans les douze premiers mois suivant l'inscription au programme. Ce cours est équivalent à ERTH 6908 à l'Université Carleton. / The Comprehensive Examination involves a thesis proposal and oral examination in three different areas of specialization. This exam should be taken within the first twelve months of registration in the program. This course is equivalent to ERTH 6908 at Carleton University.
Volet / Course Component: Recherche / Research