En bref

  • Grade universitaire offert : Doctorat en philosophie (Ph.D.)
  • Option de statut d’inscription : Temps complet
  • Langue d’enseignement : Anglais
  • Option d’étude (durée prévue du programme) :
    • avec thèse (16 trimestres à temps complet, soit 64 mois consécutifs)
  • Unités scolaires : Faculté de génie, Département de génie chimique et biologique.

Description du programme

Le programme de doctorat prépare les candidats à des carrières d’enseignement postsecondaire et/ou de recherche dans le secteur public ou privé. Les étudiants diplômés acquerront une autonomie à poursuivre dans le domaine de la recherche et des habilités de rédaction de publications pertinentes afin de promouvoir le génie chimique à l’échelle internationale.

Principaux domaines de recherche

  • le développement des matériaux
  • le génie des procédés
  • les technologies propres et l’énergie renouvelable;
  • le génie biomédical

Autres programmes offerts dans la même discipline ou dans une discipline connexe

  • Maîtrise ès sciences appliquées Génie chimique (M.Sc.A.)
  • Maîtrise ès sciences appliquées Génie chimique Spécialisation en science, société et politique publique (M.Sc.A.)
  • Maîtrise en ingénierie Génie chimique (Ph.D.)

Coût et financement

  • Frais reliés aux études :

Le montant estimé des droits universitaires de ce programme est disponible sous la section Financer vos études.

Les étudiants internationaux inscrits à un programme d'études en français peuvent bénéficier d'une exonération partielle des droits de scolarité.

  • Pour des renseignements sur les moyens de financer vos études supérieures, veuillez consulter la section Bourses et appui financier.

Notes 

  • Les programmes sont régis par les règlements généraux en vigueur pour les études supérieures.
  • Conformément au règlement de l’Université d’Ottawa, les étudiants ont le droit de rédiger leurs travaux, leur thèse et de répondre aux questions d’examen en français ou en anglais.

Coordonnées du programme

Bureau des études supérieures, Faculté de génie

161 Louis-Pasteur, Pavillon Colonel By, pièce B111

Ottawa, Ontario, Canada

K1N 6N5
 

Tél. : 613-562-5800 x6189

Courriel : etudesup.genie@uottawa.ca
 

Twitter | Faculté de génie

Facebook | Faculté de génie

Dates limites pour déposer une demande d’admission

Dates limites Trimestre d’automne Trimestre d’hiver Trimestre d’été
Étudiants canadiens 1 mai 1 novembre -
Étudiants internationaux 1 mars 1 juillet -
  • Les demandes reçues après la date limite prévue ne seront considérées qu’en fonction de la disponibilité d’espace et de fonds.
  • Présentez une demande dès maintenant! Nos départements analysent souvent les demandes dès qu'ils les reçoivent. Nos lettres d'offres sont généralement envoyées aux candidats admissibles à peine quelques semaines après réception des dossiers complets.

Pour être admissible, vous devez :

  • Être titulaire d’une maitrise en génie chimique (avec thèse ou l’équivalent en termes de publications savantes) avec une moyenne minimale d'admission de B+ (75 %).

Note : Les candidats internationaux doivent vérifier les équivalences d’admission pour le diplôme obtenu dans leur pays de provenance.

  • Démontrer une bonne aptitude à la recherche que ce soit dans le contexte d’un projet de quatrième année au baccalauréat ou par la rédaction de rapports de recherche, de résumés ou d’autres documents démontrant des habiletés de recherche.
  • Régler les frais de 100,00 $ ($CAN non remboursable) pour l’étude de votre dossier.
  • Identifier au moins un professeur prêt à diriger votre recherche et votre thèse.
    • Il est recommandé de communiquer avec le directeur de thèse dès que possible.
    • Pour pouvoir vous inscrire, vous devez faire accepter votre candidature par un directeur de thèse.
    • Le nom du professeur est requis lors de la demande d’admission.

Exigences linguistiques

Les candidats doivent comprendre et parler couramment la langue d'enseignement,  du programme dans lequel ils veulent s'inscrire. Une preuve de compétence linguistique peut être requise.

Ceux dont la langue maternelle n'est ni le français ni l'anglais doivent fournir une preuve de compétence dans la langue d'enseignement.

Tests de langue reconnus :

  • TOEFL : une note minimale de 550 (version papier) ou 79-80 (version internet); ou
  • IELTS : une moyenne globale de 6.5 et un score de 5.0 pour la compétence individuelle (version papier et version internet); ou
  • Un test de langue équivalent.

Note : Les coûts des tests de compétences linguistiques devront être assumés par le candidat.

Notes 

  • Les activités de recherche peuvent se dérouler soit en anglais soit en français soit dans les deux langues en fonction de la langue principale du professeur et des membres du groupe.
  • Les conditions d'admission décrites ci-dessus représentent des exigences minimales et ne garantissent pas l'admission au programme.
  • Les admissions sont régies par les règlements généraux en vigueur pour les études supérieures.

Documents exigés pour l’admission

En plus des documents exigés par les études supérieures et postdoctorales, les candidats doivent soumettre les documents suivants :

  • Un curriculum vitae
  • Une lettre d’intention, de motivation

Lettre démontrant vos aspirations professionnelles et votre domaine de recherche.

  • Deux lettres de recommandation confidentielles de professeurs familiers avec l’étudiant et son travail.
  • Relevé(s) de notes officiels de toutes les études postsecondaires antérieures :
    • La remise de tous les relevés de notes officiels des universités fréquentées est obligatoire.
      Cette obligation s’applique à tous les genres de cours et/ou de programmes suivis tels : les programmes réguliers (terminés ou non), les échanges, les lettres de permission, les cours suivis à titre d’étudiant libre (incluant les cours offerts soit à distance ou en ligne) etc.
    • Si le relevé de notes et le diplôme sont rédigés dans une langue autre que l’anglais ou le français, une traduction certifiée (signée et scellée) doit également être soumise.

Note : Les documents non requis à l’admission ne seront ni consultés, ni conservés, ni retournés à l’étudiant. Ces documents seront détruits selon nos procédures administratives.

Passage accéléré de la maîtrise au doctorat

Les étudiants inscrits au programme de maîtrise en génie chimique à l’Université d’Ottawa ont la possibilité de passer directement au programme de doctorat sans avoir à rédiger la thèse de maîtrise dans la mesure où les conditions suivantes sont remplies :

  • Avoir été inscrits à temps plein au programme de M.Sc.A. pendant au moins un an;
  • Réussite de quatre cours d'études supérieures (12 crédits) avec une moyenne d'au moins 80 % (A-);
  • Recommandation écrite du directeur de thèse ainsi que du comité des études supérieures;
  • Réussite d'au moins 9 crédits en génie chimique.

Notes :

  • Les candidats à la maîtrise voulant passer directement au doctorat doivent remplir les conditions précisées par leur programme principal.
  • Le passage doit s’effectuer au cours des 16 mois suivant l’inscription à la maîtrise. Une fois inscrits au doctorat, les étudiants doivent répondre à toutes les exigences de ce programme.

Pour déposer une demande d’admission

Les étudiants doivent compléter et soumettre leur demande en ligne accompagnée des documents à l’appui (s’il y a lieu) avant la date limite précisée ci-dessus.

Doctorat

Les étudiants et étudiantes doivent compléter un minimum de neuf trimestres de recherche à temps plein après le baccalauréat en sciences appliquées (B.Sc.A) et six trimestres de recherche à temps plein après la maîtrise en sciences appliquées (M.Sc.A). Il faut aussi remplir les exigences suivantes :

Cours obligatoires : 1
9 crédits de cours optionnels au-delà du diplôme de maîtrise en sciences appliquées 29 crédits
Séminaire :
CHG 8101SSeminar I1 crédit
Examen de synthèse :
CHG 9998Examen de synthèse (doctorat) 30 crédit
Thèse :
CHG 9999Thèse de doctorat 4, 50 crédit

Note(s)

1

Le département peut, selon les antécédents du candidat, imposer des cours additionnels.

2

À moins d'obtenir l'accord du Département, tous les cours doivent faire partie du programme de doctorat en génie chimique.

3

Un examen de synthèse oral et écrit doit être réussi dans les 18 mois pour pouvoir poursuivre la recherche.

4

L’étudiant est responsable de s’assurer de rencontrer les exigences relatives à la thèse

5

La thèse inclut un examen oral final portant sur la thèse. Les étudiants peuvent soumettre leur thèse sous la forme traditionnelle d'une monographie ou sous la forme d'une série d'articles devant être publiés dans des revues savantes.

Exigences minimales

La note de passage dans tous les cours est de B.

Les étudiants qui échouent six crédits, la proposition de thèse, l’examen de synthèse, la thèse ou dont le rapport de progrès est jugé insatisfaisant doivent se retirer du programme.

Passage accéléré de la maîtrise au doctorat

Le passage doit avoir lieu dans les seize mois qui suivent l’inscription initiale à la maîtrise. Suite au passage, il faut remplir toutes les exigences du doctorat : réussite d’un nombre minimal de 21 crédits de cours au niveau supérieur (M.Sc.A.+ Ph.D.) et du séminaire CHG 8102S; réussite d’un examen de synthèse dans les douze mois qui suivent le passage; et la thèse.

Domaines de recherche et installations

Située au cœur de la capitale du Canada, à quelques pas de la colline du Parlement, l’Université d’Ottawa est l’une des 10 principales universités de recherche au Canada.

uOttawa concentre ses forces et ses efforts dans quatre axes prioritaires de développement de la recherche :

  • Le Canada et le monde
  • La santé
  • La cybersociété
  • Les sciences moléculaires et environnementales

Grâce à leurs recherches de pointe, nos étudiants diplômés, nos chercheurs et nos professeurs exercent une forte influence sur les priorités à l’échelle nationale et internationale.

La recherche à la Faculté de génie

Principaux domaines de recherche :

  • Génie chimique et biologique
  • Génie civil
  • Science informatique et génie électrique
  • Génie mécanique

Pour d’autres informations, veuillez consulter la liste des membres du corps professoral et leurs domaines de recherche sur Uniweb.

IMPORTANT : Les candidats et les étudiants à la recherche de professeurs pour superviser leur thèse ou leur projet de recherche peuvent aussi consulter le site Web de la faculté ou du département du programme de leur choix.  La plateforme Uniweb n’est pas représentative de l’ensemble du corps professoral autorisé à diriger des projets de recherche à l’Université d’Ottawa.

Tous les cours décrits ci-après ne sont pas nécessairement offerts chaque année. La présence aux cours est obligatoire.

CHG 6000 Rapport en génie chimique / Chemical Engineering Report (6 crédits / 6 units)

Volet / Course Component: Recherche / Research

CHG 7999 Thèse de M.Sc.A. / M.A.Sc. Thesis

Volet / Course Component: Recherche / Research

CHG 8101S Seminar I (1 crédits / 1 units)

Oral presentation of selected topics and research papers. Attendance at all seminars is compulsory for MASc students.

Volet / Course Component: Séminaire / Seminar

CHG 8102S Seminar II (1 crédits / 1 units)

Oral presentation of selected topics and research papers. Attendance at all seminars is compulsory for PhD students.

Volet / Course Component: Séminaire / Seminar

CHG 8110 Fluid Mechanics (3 units)

Stream function, circulation and vorticity, form drag and drag coefficients, equations of motion, boundary layer theory, modern theory of turbulent motion, flow in porous media, non-Newtonian flow.

Course Component: Lecture

CHG 8115 Heat Transfer I (3 units)

The general law of heat conduction. Steady and unsteady heat conduction in solids with or without internal heat sources. Radiant heat transmission.

Course Component: Lecture

CHG 8116 Advanced Transport Phenomena (3 units)

Advanced study of momentum, heat and mass transfer relevant to chemical engineering and also to areas such as environmental engineering, medicine and other scientific disciplines. Review of the analogy between mass, momentum and thermal transport and, in particular, of the physical principles and mathematical foundations required for the analysis of fluid flow, heat transfer and mass transfer, and of the advanced methods for the analysis of transport problems. Main emphasis on formulation of a given physical problem in terms of appropriate conservation equations, and obtaining an understanding of the associated physical phenomena. Use of many chemical engineering applications to illustrate the various principles.

Course Component: Lecture

CHG 8120 Rheology and Polymer Processing (3 units)

Introduction to continuum mechanics. Viscometric flows. Introduction to viscoelasticity. Material properties and their measurements. Elastic phenomena (extrudate (die) swell). Extensional flows. Constitutive equations. Polymer processing. Extrusion, calendering, wire-coating. Numerical methods in polymer processing. Finite element analysis of polymer processes.

Course Component: Lecture

CHG 8121 Synthetic Membranes in Biomedical Engineering (3 units)

Medical applications of synthetic membranes hemodialysis, oxygenation, hemofiltration, apheresis and plasma exchange, biofunctional membranes, biosensors, drug delivery systems and microencapsulation. Emphasis on the types and classes of membranes available, relationship between structure and properties of membranes, and other variables, techniques for fabricating membranes, and special issues involved in the design and manufacture of synthetic membranes for medical use.

Course Component: Lecture

CHG 8123 Chemical Engineering Thermodynamics (3 units)

Presentation of the fundamentals and the contemporary research developments in chemical engineering thermodynamics. Thermodynamic properties and formulations. Properties of fluids. Stability of thermodynamic systems. Criteria of equilibrium. Evaluation of thermodynamic properties. Mathematical methods and data handling.

Course Component: Lecture

CHG 8132 Adsorption Separation Processes (3 units)

Discussion of different microporous materials and molecular sieves as adsorbents. Adsorption equilibrium and adsorption kinetics. Equilibrium adsorption of single fluids and mixtures. Diffusion in porous media and rate processes in adsorbers. Adsorber dynamics: bed profiles and breakthrough curves. Cyclic fluid separation processes. Pressure swing adsorption. Examples of commercial separation applications. This course is equivalent to ENVJ 5105 at Carleton University.

Course Component: Lecture

CHG 8141 Special Directed Studies I (3 units)

Course Component: Lecture

CHG 8143 Special Directed Studies II (3 units)

Course Component: Lecture

CHG 8145 Special Directed Studies III (3 units)

Course Component: Lecture

CHG 8153 Stat. Model and Cont. Dyna. Proc. (3 units)

Discrete, linear, stochastic models for dynamic processes. Univariate Time Series. Identification of transfer function models. Fitting and checking transfer function models. Design of feedforward and feedback control schemes. Applications to chemical processes. This course is equivalent to ENVJ 5500 at Carleton University.

Course Component: Lecture

CHG 8157 Strategies for Engineering Process Analysis (3 units)

Statistical experimental design and analysis techniques for industrial and laboratory investigations are presented. Topics include: the nature and analysis of process variation, comparisons of two or more processes, empirical modelling of processes, applications of factorial and fractional factorial designs, mixture designs, response surface methodologies and empirical optimization techniques.

Course Component: Lecture

CHG 8158 Porous Media (3 units)

Classification and structural properties of porous media. Porosity, permeability, tortuosity, pore size distribution, anisotropy, heterogeneity. Capillary phenomena in porous media. Capillary pressure-saturation function. Single-phase fluid flow, electrical conduction and diffusion in porous media. Phenomenological flow models, capillary models, cell models. Darcy's Law and the Brinkman Equation. Two-phase flow in porous media. Computer simulations of water/oil displacement in porous media. This course is equivalent to ENVJ 5304 at Carleton University.

Course Component: Lecture

CHG 8161 Chemical Reaction Engineering I (3 units)

Kinetics of chemical reactions and its application to chemical engineering problems. Rate expressions and heterogeneous kinetics. Preparation and evaluation of catalyst activity. Promoters and poisons. Physical properties and transfer of mass and energy in porous catalysts. Interpretation of kinetic data and determination of mechanisms of catalyzed reactions.

Course Component: Lecture

CHG 8175 Material Transport (3 units)

Diffusivity and mechanisms of mass transport. Equations of change for multi-component systems. Boundary layer theory with simultaneous heat, mass and momentum transfer. Concentration distributions in turbulent flow. Interphase transport in multi-component systems. Film theory. Penetration theory. Macroscopic mass, momentum, energy and mechanical energy balance equations.

Course Component: Lecture

CHG 8181 Biochemical Engineering (3 units)

Kinetics of bioreactions, growth and product formation. Batch and continuous bioprocesses. Mass and heat transfer in bioreactors. Novel bioreactor design. Industrial microbiology. Animal and plant cell culture. Downstream processing. Biosensors, biological waste-water treatment, biocorrosion, bioleaching. Nitrogen fixation. Genetic engineering. This course is equivalent to ENVJ 5501 at Carleton University.

Course Component: Lecture

CHG 8186 Modelling of Steady-State Processes (3 units)

A comprehensive examination of techniques for building and analyzing process models is made. Topics include: linear least squares estimation, non-linear least squares estimation, multiresponse parameter estimation, error in variables estimation, heterosedasticity, design of experiments for precise parameter estimation and model discrimination. This course is equivalent to ENVJ 5506 at Carleton University.

Course Component: Lecture

CHG 8187 Introduction to Polymer Reaction Engineering (3 units)

Introduction to principles governing polymerization reactions and the resultant physical properties of polymers. Theory and experimental methods for the characterization of polymers. Mechanism and kinetics of polymerization reactions with emphasis on chain-growth polymerizations. Mathematical modelling and polymer reactor design.

Course Component: Lecture

CHG 8188 Polymer Properties and Characterization (3 units)

Polymer properties are described and discussed in the context of their nature, source and means of measurement. Chemical and microstructural properties; physical states and transitions; thermal properties; mechanical properties and viscoelasticity models; degradation and stability; surface, electrical and optical properties, polymer additives; structure-property relationships.

Course Component: Lecture

CHG 8189 Chemical Engineering Analysis (3 units)

Treatment and interpretation of experimental data. Formulation of ordinary and partial differential equations for the solution of problems arising in chemical engineering. Emphasis will be on problems requiring numerical techniques with examples taken from fluid flow, heat transfer and mass transfer. Selection of boundary conditions.

Course Component: Lecture

CHG 8191 Selected Topics Chemical Engineering (3 units)

Discussion of recent progress in chemical engineering. This course is equivalent to ENVJ 8191 at Carleton University.

Course Component: Lecture

CHG 8192 Membrane Application in Environmental Engineering (3 units)

Course emphasizing the applications of membrane separation processes in the resolution of various environmental problems. Applications of reverse osmosis, ultrafiltration and pervaporation to the treatment of industrial waste waters. Applications of membrane gas and vapor permeation to the removal of pollutants from air. Discussion of fundamentals underlying each separation process. This course is equivalent to ENVJ 5502 at Carleton University.

Course Component: Lecture

CHG 8194 Membrane Separation Processes (3 units)

Advanced topics of membrane separations including reverse osmosis, ultrafiltration, gas separation, non-aqueous liquid separation, and membrane applications in biotechnology. The course involves problem solving in membrane transport, membrane design, and membrane process design. This course is equivalent to ENVJ 5504 at Carleton University.

Course Component: Lecture

CHG 8195 Advanced Numerical Methods in Transport Phenomena (3 units)

Survey course of numerical methods for solving linear and non-linear ordinary and partial differential equations. Techniques reviewed include Runge-Kutta and predictor-corrector methods, shooting techniques, control volume discretization methods and finite elements. Example problems from the field of transport phenomena. This course is equivalent to ENVJ 5505 at Carleton University.

Course Component: Lecture

CHG 8196 Interfacial Phenomena in Engineering (3 units)

Interfacial tension and interfacial free energy; contact angles; spreading of liquids; wetting of surfaces; experimental techniques. Interfacial tension of mixtures; Gibbs equation; absorbed and insoluble monolayers; properties of monolayers and films. Electrical phenomena at interfaces; the electrical double layer; zeta-potential; electrokinetic phenomena (electrophoresis, electro-osmosis, streaming potential); surface conductance. Dispersed systems; formation and practical uses of emulsions; spontaneous emulsification; flocculation. This course is equivalent to ENVJ 5507 at Carleton University.

Course Component: Lecture

CHG 8198 Reverse Osmosis (3 units)

Physical chemical criteria for reverse osmosis separations, membrane materials, and membrane casting techniques. Basic transport equations for single and mixed solute systems. Prediction of membrane performance. Process design, specification, and analysis applications. This course is equivalent to ENVJ 5503 at Carleton University.

Course Component: Lecture

CHG 9998 Examen de synthèse (doctorat) / Comprehensive Examination (Ph.D.)

Volet / Course Component: Recherche / Research

CHG 9999 Thèse de doctorat / Ph.D. Thesis

Volet / Course Component: Recherche / Research