MASTER OF SCIENCE PHYSICS

Summary

- Degree offered: Master of Science (MSc)
- Registration status options: Full-time; Part-time
- Language of instruction: English

Most of the requirements of this program must be fulfilled in English. Research activities may be conducted in English or in French, or in both languages, depending on the main language of the professor and of the members of the research group.

- Program options (expected duration of the program):
 - with thesis, standard stream (6 full-time terms; 24 consecutive months)
 - with thesis, accelerated stream (3 full-time terms; 12 consecutive months)
 - with physics in modern technology option (3 full-time terms; 12 consecutive months)

Program Description

Ottawa-Carleton Institute for Physics

Established in 1983, the Ottawa-Carleton Institute for Physics (OCIP) combines the research strengths of the University of Ottawa and Carleton University. The Institute offers graduate programs leading to the master's (MSc) and doctoral (PhD) degrees in Physics.

Research facilities are shared between the two campuses. Students have access to the professors, courses and facilities at both universities; however, they must enroll at the “home university” of the thesis supervisor.

Main Areas of Research

- Condensed matter
- High energy physics
- Biological physics
- Medical physics
- Photonics

Other Programs Offered Within the Same Discipline or in a Related Area

- Master of Science Physics Specialization in Science, Society and Policy (MSc)
- Doctorate in Philosophy Physics (PhD)

Fees and Funding

- Program fees:
 The estimated amount for university fees (https://www.uottawa.ca/university-fees) associated with this program are available under the section Finance your studies (http://www.uottawa.ca/graduate-studies/programs-admission/finance-studies).

International students enrolled in a French-language program of study may be eligible for a differential tuition fee exemption (https://www.uottawa.ca/university-fees/differential-tuition-fee-exemption).

- To learn about possibilities for financing your graduate studies, consult the Awards and financial support (https://www.uottawa.ca/graduate-studies/students/awards) section.

Notes

- Programs are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations) in effect for graduate studies.
- In accordance with the University of Ottawa regulation, students have the right to complete their assignments, examinations, research papers, and theses in French or in English.

Program Contact Information

Graduate Studies Office, Faculty of Science (https://science.uottawa.ca/en/faculty-services/graduate-studies)
30 Marie-Curie Street, Room 181
Ottawa, Ontario, Canada
K1N 6N5

Tel.: 613-562-5800 ext. 3145
Email: gradsci@uOttawa.ca

Twitter | Faculty of Science (https://twitter.com/uOttawaScience)
Facebook | Faculty of Science (https://www.facebook.com/uOttawaScience)

Admission Requirements

To be eligible for the standard stream of the MSc, candidates must:

- Be the holder of a bachelor’s degree with a specialization, or a major in physics (or equivalent) with a minimum average of 70% (B).
Notes

- The admission requirements listed above are minimum requirements and do not guarantee admission to the program.
- Admissions are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations) in effect for graduate studies.

Documents Required for Admission

In addition to the documents required (http://www.uottawa.ca/graduate-studies/programs-admission/apply/required-documents) for graduate and postdoctoral studies, candidates must submit the following documents:

- A resume
- A letter of intent

Letter outlining your professional goals and proposed research area.

- Two confidential letters of recommendation from professors who have known the applicant and are familiar with their work.

You are strongly encouraged to contact your referee(s) prior to submitting your application in order to confirm their email address and their availability to complete your letter of recommendation.

- Transcripts from all universities attended.
 - You must submit official transcripts from all the universities you have attended.
 - This applies to all courses and programs at any university you attended, including regular programs (completed or not), exchanges, letters of permission, online or correspondence courses, courses taken as a special student or visiting student, etc.
 - If the transcript and degree certificate are not in English or French, a certified translation (signed and stamped/sealed) must be submitted.

Note: Documents that are not required for admission will not be consulted, conserved or returned to the student. These documents will be destroyed according to our administrative procedures.

Information about how to apply to this program is available under the Apply Now (http://www.uottawa.ca/graduate-studies/programs-admission/apply/#apply-now) section.

Students should complete and submit their online application with supporting documentation (if applicable) by the deadline indicated above. The supporting documentation should be sent by e-mail attachment, regular mail, or in person.

Program Requirements

Master’s with Thesis

Students must meet the following requirements:

Participation in the Institute’s seminar series is compulsory.

Compulsory Courses:

| 9 optional course units in physics (PHY) at the graduate level | 9 Units |

Thesis:

Master’s with Physics in Modern Technology Option

Students must meet the following requirements:

Participation in the Institute’s seminar series is compulsory.

Compulsory Courses:

18 optional course units in physics (PHY) at the graduate level\(^1\) 18 Units

Work Term:

PHY 5495 Physics in Modern Technology Work Term\(^2\) 0 Unit

Note(s)

1. The optional course units may be selected in related disciplines approved by the Department of Physics.
2. Students in the physics in modern technology option are required to complete a work term rather than a research thesis. Although every effort is made to find a work term position for every student in the physics in modern technology option, no guarantee of employment can be made. To minimize the likelihood of a work term position not being found, acceptance in the option will be limited to reflect the availability of work term placements. In the event that a work term placement cannot be found, students may fulfill the master’s degree requirements with courses only as described in option A. Students in this option are normally expected to complete all their requirements in three consecutive terms.

Fast-Track from Master’s to PhD

Students enrolled in the master’s program in Physics at the University of Ottawa may be eligible to fast-track directly into the doctoral program without writing a master’s thesis. For additional information, please consult the “Admission Requirements” section of the PhD program. Students in the accelerated stream of the MSc are not eligible for the fast-track to the PhD.

Minimum Requirements

The passing grade in all courses is B. Students who fail two courses, or the thesis proposal, or whose research progress is deemed unsatisfactory must withdraw from the program.

Research

Research Fields & Facilities

Located in the heart of Canada’s capital, a few steps away from Parliament Hill, the University of Ottawa is among Canada’s top 10 research universities.

uOttawa focuses research strengths and efforts in four Strategic Areas of Development in Research (SADRs):

- Canada and the World
- Health
- e-Society
- Molecular and Environmental Sciences

With cutting-edge research, our graduate students, researchers and educators strongly influence national and international priorities.

Research at the Faculty of Science

The Faculty of Science has become a true centre of excellence in research through its world-class professors as well as its programs and infrastructure in Biology, Chemistry, Earth Sciences, Mathematics and Statistics, and Physics.

The research accomplished by its 140 internationally recognized professors, its approximately 400 graduate students and its dozens of postdoctoral researchers and visiting scientists has positioned the Faculty of Science as one of the most research intensive science faculties in Canada. Our professors have received many international and national awards including three NSERC Gerhard Herzberg Gold Medal winners and numerous Fellows of the Royal Society of Canada.

The Faculty of Science, through its strategic use of infrastructure programs, hosts world-class Core Facilities and is at the leading edge for the study of Catalysis, Experimental and Computational Chemistry, Environmental Toxins, Nuclear Magnetic Resonance, Isotope Analysis, Molecular Biology and Genomics, X-Ray Spectrometry/Diffractometry, Geochemistry, Mass Spectrometry, Physiology and Genetics of Aquatic Organisms, and Photonics. The Faculty is also associated with the Fields Institute for research in mathematical science and the Centre de recherche mathématiques (CRM) at the Université de Montréal, providing a unique setting for mathematical research.

For more information, refer to the list of faculty members and their research fields on Uniweb.

IMPORTANT: Candidates and students looking for professors to supervise their thesis or research project can also consult the website of the faculty or department (https://www.uottawa.ca/graduate-studies/students/academic-unit-contact-information) of their program of choice. Uniweb does not list all professors authorized to supervise research projects at the University of Ottawa.

Courses

Not all of the listed courses are given each year. The course is offered in the language in which it is described. Course codes in parentheses are for Carleton University. A 3-unit course at the University of Ottawa is equivalent to a 0.5-unit course at Carleton University.
PHY 5100 Solid State Physics I (3 units)
Periodic structures. Phonons and specific heat. Electron states and various methods of energy band calculation. Cohesion of solids. Electron-electron interaction. Optical properties. This course is equivalent to PHYJ 5401 at Carleton University.
Course Component: Lecture

PHY 5110 Solid State Physics II (3 units)
Elements of group theory. Measuring the Fermi surface. One electron dynamics. k.p method. Impurities. Quantum wells. Diamagnetism, paramagnetism and magnetic ordering. Superconductivity. This course is equivalent to PHYJ 5402 at Carleton University.
Course Component: Lecture

PHY 5112 Physics of Medical Imaging (3 units)
Physical foundation of, and recent developments in, transmission x-ray imaging, computerized tomography, nuclear medicine, magnetic resonance imaging, and ultrasound, for the imaging physics specialist. Imaging system performance: contrast, resolution, modulation transfer function, signal-to-noise ratio, detective quantum efficiency. Essentials of image display and processing. This course is equivalent to PHYS 5204 at Carleton University.
Course Component: Lecture

PHY 5130 Experimental Characterization Techniques in Materials Science, Physics, Chemistry, and Mineralogy (3 units)
Survey of experimental techniques used in materials science, condensed matter physics, solid state chemistry, and mineralogy to characterize materials and solid substances. Diffraction (X-ray diffraction, neutron diffraction...). Spectroscopy (infra-red spectroscopy, Raman spectroscopy, nuclear magnetic resonance, Mössbauer spectroscopy, electron spin resonance...). Microscopy and imaging (scanning electron microscopy, transmission electron microscopy, optical microscopy, magnetic resonance imaging...). Other analytic techniques (thermal analysis, wet chemistry, bulk thermodynamic properties, linear response and dc susceptibility...). This course is equivalent to PHYJ 5001 at Carleton University.
Course Component: Lecture

PHY 5140 Methods in Theoretical Physics I (3 units)
This course is equivalent to PHYS 5801 at Carleton University.
Course Component: Lecture

PHY 5141 Methods in Theoretical Physics II (3 units)
This course is equivalent to PHYS 5802 at Carleton University.
Course Component: Lecture

PHY 5151 Type I and II Superconductors (3 units)
Flux flow and flux cutting phenomena. Clem general critical state model. Flux quantization, Abrikosov vortex model and Ginzburg-Landau theory. Superconducting tunnelling junctions (Giaever and Josephson types). High Tc superconductivity. This course is equivalent to PHYJ 5403 at Carleton University.
Course Component: Lecture
Prerequisite: PHY 4370

PHY 5161 Medical Radiation Physics (3 units)
This course is equivalent to PHYS 5203 at Carleton University.
Course Component: Lecture

PHY 5163 Radiation Protection (2 units)
This course is equivalent to PHYS 5208 at Carleton University.
Course Component: Lecture

PHY 5164 Medical Radiotherapy Physics (3 units)
This course is equivalent to PHYS 5206 at Carleton University.
Course Component: Lecture

PHY 5165 Radiobiology (3 units)
This course is equivalent to PHYS 5207 at Carleton University.
Course Component: Lecture

PHY 5166 Medical Physics Practicum (3 units)
This course is equivalent to PHYS 5209 at Carleton University.
Course Component: Lecture

PHY 5167 Advanced Topics in Medical Physics (3 units)
Topics may include medical imaging physics, cancer therapy physics, medical biophysics, or radiation protection and health physics. Topics vary from year to year.
Course Component: Lecture
Prerequisites: PHY 5161 plus, as appropriate to the topic offered, at least one of PHY 5112, PHY 5164, PHY 5165.

PHY 5168 Anatomy and Physiology for Medical Physicists
Overview of human anatomy and physiology as background for the application of physics to cancer therapy and medical imaging. Anatomy as depicted by imaging technologies such as CT, MRI, and radiography will be emphasized. Graded S (Satisfactory) or NS (Not satisfactory).
Course Component: Lecture
Prerequisite: Enrolment in the graduate field of medical physics.

PHY 5170 Advanced Quantum Mechanics I (3 units)
Review of operators, motion in a general field and angular momentum. Identical particles and exchange, two electron atoms, Hartree-Fock and statistical models of many particle systems. Angular momentum, Clebsch-Gordan coefficients and scattering theory.
Course Component: Lecture
Prerequisite: PHY 4370.

PHY 5310 Advanced Optics and Photonics (3 units)
Introduction to laser physics: Optical resonators, light-matter interaction, basic operation of lasers, coherence, light control and manipulation, beam optics, Fourier optics. Guided wave optics: light propagation, allowed modes, dispersion. Courses PHY 5310, PHY 4310 cannot be combined for units. This course is equivalent to PHYJ 5310 at Carleton University.
Course Component: Lecture

PHY 5311 Quantum Optics I (3 units)
Classical and semi-classical light-matter interaction; gauges and energy conservation; two level systems in the resonant, under-resonant and over-resonant limit; time-dependent perturbation theory and Fermi's golden rule; semi-classical laser theory; Landau Zener tunnelling and multi-photon transitions; tunnel ionization and multi-photon ionization. This course is equivalent to PHYJ 5311 at Carleton University.
Course Component: Lecture

PHY 5312 Quantum Optics II (3 units)
Quantum light-matter interaction; quantization of the light field and of Schrödinger equation; number states and coherent states; photon emission and absorption; two-photon decay; photoelectric effect; Lamb shift, line-width and renormalization; Casimir effect; multi-photon processes; density operator; quantum theory of decay; quantum laser theory. This course is equivalent to PHYJ 5312 at Carleton University.
Course Component: Lecture
PHY 5318 Modern Optics (3 units)
Electromagnetic wave propagation; reflection, refraction; Gaussian beams; guided waves. Laser theory: stimulated emission, cavity optics, gain and bandwidth, atomic and molecular lasers. Mode locking, Q switching. Diffraction theory, coherence, Fourier optics, holography, laser applications. Optical communication systems, nonlinear effects: devices, fibre sensors, integrated optics.

Course Component: Lecture

PHY 5320 Introduction to the Physics of Macromolecules (3 units)
The chemistry of macromolecules and polymers; random walks and the static properties of polymers; experimental methods; the Rouse model and single chain dynamics; polymer melts and viscoelasticity; the Flory-Huggins theory; the reptation theory; computer simulation algorithms; biopolymers and copolymers. This course is equivalent to PHYJ 5508 at Carleton University.

Course Component: Lecture

PHY 5322 Biological Physics (3 units)
Biological phenomena studied using techniques of physics. Key components of cells. Physical concepts relevant to cellular phenomena: Brownian dynamics, fluids, suspensions, entropy driven phenomena, chemical forces and self-assembly. Biological molecules. Enzymes. Molecular motors. Nerve impulses. Also offered, with different requirements, as PHY 4322. Courses PHY 4322, PHY 5322 cannot be combined for units. This course is equivalent to PHYJ 5322 at Carleton University.

Course Component: Lecture

Exclusion: PHY 4322.

PHY 5330 Fiber Optics Communications (3 units)

Course Component: Lecture

PHY 5331 Fiber Optics Sensors (3 units)
Fundamental properties of optical fibres. Light sources and detectors for optical fibre applications. Fibre optics sensors based on the Mach-Zehnder, Michelson and Fabry-Perot Interferometers, Bragg gratings. Signal detection schemes. Distributed sensing and multiplexing. Applications for optical fibre sensors. Temperature and strain measurements. This course is equivalent to PHYJ 5331 at Carleton University.

Course Component: Lecture

PHY 5332 Nonlinear Optics (3 units)
Nonlinear optical susceptibility; wave equation description of nonlinear optics processes: second harmonic generation, intensity dependent refractive index, sum- and frequency-generation, parametric amplification; quantum mechanical theory of nonlinear optics; Brillouin and Raman scattering; the electro-optic effect; nonlinear fibre optics and solitons. This course is equivalent to PHYJ 5332 at Carleton University.

Course Component: Lecture

PHY 5333 Mode Locked Lasers (3 units)
Concept and realization of mode locking. Mode locked lasers including Q-switch. Ultrafast pulse generation and measurement. Soliton generation: dispersion and self-phase modulation. Applications to science and technology. This course is equivalent to PHYJ 5333 at Carleton University.

Course Component: Lecture

PHY 5340 Computational Physics I (3 units)

Course Component: Lecture

PHY 5341 Computational Physics II (3 units)
Interpolation, regression and modeling. Random number generation. Monte-Carlo methods. Simulations in thermo-statistics. Fractals, percolation, cellular automata. Stochastic numerical methods. Courses PHY 5341, PHY 4341 cannot be combined for units. This course is equivalent to PHYJ 5005 at Carleton University.

Course Component: Lecture

PHY 5342 Computer Simulations in Physics (3 units)
A course aimed at exploring physics with a computer in situations where analytic methods fail. Numerical solutions of Newton's equations, non-linear dynamics. Molecular dynamics simulations. Monte-Carlo simulations in statistical physics: the Ising model, percolation, crystal growth models. Symbolic computation in classical and quantum physics. This course is equivalent to PHYJ 5003 at Carleton University.

Course Component: Lecture

Prerequisites: PHY 3355 (PHY 3755), PHY 3370 (PHY 3770) and familiarity with FORTRAN, Pascal or C.

PHY 5344 Computational Physics (3 units)

Course Component: Lecture

PHY 5347 Physics, Chemistry and Characterization of Mineral Systems (3 units)
The materials science of mineral systems such as the network and layered silicates. In-depth study of the relations between mineralogically relevant variables such as atomic structure, crystal chemistry, site populations, valence state populations, crystallization conditions, etc. Interpretation and basic understanding of key characterization tools such as microprobe analysis, Mössbauer spectroscopy, x-ray diffraction and optical spectroscopy. This course is equivalent to PHYJ 5509 at Carleton University.

Course Component: Lecture

PHY 5355 Statistical Mechanics (3 units)
Ensemble theory. Interacting classical and quantum systems. Phase transitions and critical phenomena. Fluctuations and linear response theory. Kinetic equations. This course is equivalent to PHYJ 5505 at Carleton University.

Course Component: Lecture

Prerequisites: PHY 4370 and PHY 3355.
PHY 5361 Nonlinear Dynamics in the Natural Sciences (3 units)
A multidisciplinary introduction to nonlinear dynamics with emphasis on
the techniques of analysis of the dynamic behaviour of physical systems.
Basic mathematical concepts underlying nonlinear dynamics, including
differential and difference equations, Fourier series and data analysis,
stability analysis, Poincaré maps, local bifurcations, routes to chaos
and statistical properties of strange attractors. Applications of these
correlations to specific problems in the natural sciences such as condensed
matter physics, molecular physics, fluid mechanics, dissipative
structures, evolutionary systems, etc. This course is equivalent to PHYJ
5102 at Carleton University.
Course Component: Lecture

PHY 5362 Computational Methods in Material Sciences (3 units)
Introduction to modern computational techniques used in material
science research. Classical molecular dynamics, classical and quantum
Monte Carlo methods, plane-wave based electronic band structure
calculations, Carr-Parrinello quantum molecular dynamics. Applications
to condensed matter systems: basic simulation techniques, force-field
based methods in the study of thermodynamic and physical properties
of solids, first-principles quantum mechanical methods. This course is
equivalent to PHYJ 5006 at Carleton University.
Course Component: Lecture

PHY 5363 Semiconductor Physics I (3 units)
Introduction to the physics and technology of semiconductors. Basic
concepts of solid-state physics, band structure, semiconductor
bandgap, and Fermi level. Review of quantum mechanics and
statistics. Application of quantum mechanics to semiconductor
structures. This course is equivalent to PHYJ 5001 at Carleton University.
Course Component: Lecture

PHY 5369 Physics in Modern Technology Work Term
Practical experience for students in the physics in modern technology
stream. Graded S (Satisfactory) or NS (Not satisfactory), to be based
on the grades obtained for the written and oral reports as well as on the
evaluations of the employer. This course is equivalent to PHYS 5905 at
Carleton University.
Course Component: Work Term

PHY 5495 Physics in Modern Technology Work Term
Practical experience for students in the physics in modern technology
stream. Graded S (Satisfactory) or NS (Not satisfactory), to be based
on the grades obtained for the written and oral reports as well as on the
evaluations of the employer. This course is equivalent to PHYS 5905 at
Carleton University.
Course Component: Work Term

PHY 5502 Physique biologique (3 crédits)
Application des méthodes de la physique à l'étude des phénomènes
biologiques. Composantes principales d'une cellule. Concepts physiques
pertinents aux phénomènes cellulaires : dynamique brownienne, liquides,
suspensions, phénomènes d'origine entropique, forces chimiques et auto-
Impulsions nerveuses. Offert également, avec des exigences différentes,
sous la cote PHY 4722. Les cours PHY 4722, PHY 5722 ne peuvent être
combénisés pour l'obtention de crédits. Ce cours est équivalent à PHYJ
5722 à la Carleton University.
Volet : Cours magistral
Exclusion: PHY 4322.

PHY 5503 Physique numérique I (3 crédits)
Méthodes numériques déterministes en physique. Techniques
d'interpolation. Solutions numériques des équations de Newton, de
Maxwell et de Schrödinger. Dynamique moléculaire. Dynamique non-
linéaire. Solutions numériques des équations aux dérivées partielles en
physique. Éléments finis. Les cours PHY 5740, PHY 4740 ne peuvent être
combénisés pour l'obtention de crédits. Ce cours est équivalent à PHYJ
5502 à la Carleton University.
Volet : Cours magistral

PHY 5504 Physique numérique II (3 crédits)
Interpolations, régression et modélisation de données. Nombres
aléatoires. Techniques de Monte-Carlo. Simulations thermo-statistiques.
Percolation, fractales et automates cellulaires. Méthodes numériques
stochastiques. Les cours PHY 5741, PHY 4741 ne peuvent être
combénisés pour l'obtention de crédits. Ce cours est équivalent à PHYJ
5503 à la Carleton University.
Volet : Cours magistral

PHY 5508 Physics of Fiber Optic Systems (3 units)
Physics of electromagnetic waves in fiber-optic systems. Laser
modulation, chirp effects, noise. Amplitude, frequency and phase
modulation. Optical dispersion (chromatic dispersion, polarization mode
dispersion and polarization-dependent losses). Fiber losses and non-
linear effects. Optical detectors, receivers, signal to noise ratio, power
penalties. Overall system design. This course is equivalent to PHYJ 5308
at Carleton University.
Course Component: Lecture

PHY 5510 Physics of Materials (3 units)
Microscopic characteristics related to the physical properties of
materials. Materials families: metals and alloys, ceramics, polymers
and plastics, composites, layered materials, ionic solids, molecular
solids, etc. Specific materials groups. Equilibrium phase diagrams and
their relation to microstructure and kinetics. Experimental methods of
characterization. Interactions and reactions. This course is equivalent to
PHYJ 5504 at Carleton University.
Course Component: Lecture
Prerequisite: PHY 4382 or equivalent. Cannot be combined for credit with
PHY 4387.

PHY 5521 Semiconductor Physics II: Optical Properties (3 units)
Optical constants and dispersion theory. Optical absorption, reflection,
and band structure. Absorption at band edge and excitons. Lattice, defect
and free-carrier absorption. Magneto-optics. Photo-electronic properties,
luminescence, detector theory. Experimental methods.
Course Component: Lecture
Prerequisite: PHY 4380 or equivalent

PHY 5522 Semiconductor Physics III: Electrical Properties (3 units)
Introduction to the physics and technology of semiconductors. Basic
concepts of solid-state physics, band structure, semiconductor
bandgap, and Fermi level. Review of quantum mechanics and
statistics. Application of quantum mechanics to semiconductor
structures. This course is equivalent to PHYJ 5001 at Carleton University.
Course Component: Lecture

PHY 5541 Physique numérique I (3 crédits)
Méthodes numériques déterministes en physique. Techniques
d'interpolation. Solutions numériques des équations de Newton, de
Maxwell et de Schrödinger. Dynamique moléculaire. Dynamique non-
linéaire. Solutions numériques des équations aux dérivées partielles en
physique. Éléments finis. Les cours PHY 5740, PHY 4740 ne peuvent être
combénisés pour l'obtention de crédits. Ce cours est équivalent à PHYJ
5502 à la Carleton University.
Volet : Cours magistral

PHY 5542 Physique numérique II (3 crédits)
Interpolations, régression et modélisation de données. Nombres
aléatoires. Techniques de Monte-Carlo. Simulations thermo-statistiques.
Percolation, fractales et automates cellulaires. Méthodes numériques
stochastiques. Les cours PHY 5741, PHY 4741 ne peuvent être
combénisés pour l'obtention de crédits. Ce cours est équivalent à PHYJ
5503 à la Carleton University.
Volet : Cours magistral

PHY 5544 Physique de l’assemblage de la matière (3 crédits)
Introduction à la science des matériaux, microstructure, traction et
compression. Composantes principales d’une cellule. Concepts physiques
pertinents aux phénomènes cellulaires : dynamique brownienne, liquides,
suspensions, phénomènes d'origine entropique, forces chimiques et auto-
Impulsions nerveuses. Offert également, avec des exigences différentes,
sous la cote PHY 4722. Les cours PHY 4722, PHY 5722 ne peuvent être
combénisés pour l'obtention de crédits. Ce cours est équivalent à PHYJ
5722 à la Carleton University.
Volet : Cours magistral

PHY 5545 Physique des matériaux (3 crédits)
Physique des matériaux, métallurgie, céramique, polymères,
aluminium, alliages, céramiques, composites, matériaux à bande
électroénétique, matériaux ioniques, matériaux moléculaires,
aluminium, alliages, céramiques, composites, matériaux à bande
electroénétique, matériaux ioniques, matériaux moléculaires,
ions solides, matériaux moléculaires, etc. Groupes spécifiques de
matériaux. Diagrammes de phase équilibrés et leur relation à
microstructure et cinétique. Méthodes expérimentales de
characterisation. Interactions et réactions. Ce cours est équivalent à
PHYJ 5504 à la Carleton University.
Course Component: Lecture
PHY 5895 Stage en physique de la technologie moderne
Exemple pratique pour les étudiants dans l'option physique de la technologie moderne. Note S (satisfaisant) ou NS (non satisfaisant), basée sur l'évaluation de l'employeur et les rapports écrits et oraux décrivant le projet du stage.
Volet : Cours magistral
Préalable : Être accepté dans l'option physique de la technologie moderne du programme de maîtrise et permission du département.

PHY 5922 Advanced Magnetism (3 crédits / 3 units)
Study of some of the experimental and theoretical aspects of magnetic phenomena found in ferro-, ferr-; antiferro-magnetic and spin glass materials. Topics of current interest in magnetism. Ce cours est équivalent à PHYJ 5507 à la Carleton University. This course is equivalent to PHYJ 5507 at Carleton University.
Volet / Course Component: Cours magistral / Lecture
Prerequisite: PHY 4385 or equivalent.

PHY 5951 Physique de basses températures / Low Temperature Physics II (3 crédits / 3 units)
Properties of matter at low temperatures. Helium Physics. Thermometry at Low Temperatures. Theory and Technology of Cryogenics Refrigerators. Applied Superconductivity. Recent developments: Cryoelectronic, Quantum Hall Effect. Helium Crystal Growth, Nuclear Magnetic Ordering, Cryogenic Detectors and Polarised Target for High Energy Physics. Ce cours est équivalent à PHYJ 5409 à la Carleton University. / This course is equivalent to PHYJ 5409 at Carleton University.
Volet / Course Component: Cours magistral / Lecture
Prerequisite: PHY 3355 or PHY 3755

PHY 5966 Experimental Techniques of Nuclear and Elementary Particle Physics (3 crédits / 3 units)
A course intended for students interested in high energy experimental physics. Large accelerators for charged particles. Particle detectors: nuclear emulsion, bubble chamber, spark chamber, Vertex detectors and calorimeters etc. Study of properties of elementary particles through analysis of experimental results. Ce cours est équivalent à PHYJ 5601 à la Carleton University. / This course is equivalent to PHYJ 5601 at Carleton University.
Volet / Course Component: Cours magistral / Lecture
Prerequisite: PHY 4360

PHY 5967 Physique des particules / Elementary Particle Physics (3 crédits / 3 units)
Ce cours est équivalent à PHYS 5602 à la Carleton University. / This course is equivalent to PHYS 5602 at Carleton University.
Volet / Course Component: Cours magistral / Lecture

PHY 6170 Advanced Quantum Mechanics II (3 units)
Systems of identical particles and many-body theory. Lattice and impurity scattering. Quantum processes in a magnetic field. Radiative and non-radiative transitions. Introduction to relativistic quantum mechanics. This course is equivalent to PHYJ 5703 at Carleton University.
Course Component: Lecture
Prerequisite: PHY 5170.

PHY 6371 Topics in Mossbauer Spectroscopy (3 units)
Experimental techniques used to measure Mössbauer spectra. Physics of the Mössbauer effect: recoilless emission/absorption, anisotropic Debye-Waller factors, second order Doppler shifts, etc. Mössbauer lineshape theory with static and dynamic hyperfine interactions. Distributions of static hyperfine parameters. Physics of the hyperfine parameters: origin of the hyperfine field, transferred and supertransferred fields, calculations of electric field gradients, etc. Applications of Mössbauer spectroscopy to various areas of solid state physics and materials science. This course is equivalent to PHYJ 5404 at Carleton University.
Course Component: Lecture

PHY 6382 Physics of Semiconductor Super Lattices (3 units)
Fundamental physics of two-dimensional quantized semiconductor structures. Electronic and optical properties of superlattices and quantum wells. Optical and electronic applications. This course is intended for students registered for the Ph.D. in semiconductor physics research. This course is equivalent to PHYS 5406 at Carleton University.
Course Component: Lecture
Prerequisite: Advanced undergraduate or graduate course in solid state physics.

PHY 6650 Supraconductivité II (2 crédits)
Volet : Cours magistral

PHY 6782 Physique des super-réseaux à semiconducteurs (3 crédits)
Physique fondamentale des structures quantiques bi-dimensionnelles à semiconducteurs. Propriétés électroniques et optiques des super-réseaux et puits quantiques. Applications à l'électronique et à l'optique. Ce cours est destiné aux étudiantes et aux étudiants inscrits au doctorat en physique des semiconducteurs. Ce cours est équivalent à PHYJ 5407 à la Carleton University.
Volet : Cours magistral
Préalable : Cours sénior ou de niveau supérieur en physique de l'état solide.

PHY 7999 Thèse de maîtrise / MSc Thesis
Ce cours est équivalent à PHYS 5909 à la Carleton University. / This course is equivalent to PHYS 5909 at Carleton University.
Volet / Course Component: Recherche / Research

PHY 8111 Classical Mechanics and Theory of Field (3 units)
This course is equivalent to PHYS 5101 at Carleton University.
Course Component: Lecture

PHY 8122 Molecular Spectroscopy (3 units)
This course is equivalent to PHYS 5202 at Carleton University.
Course Component: Lecture

PHY 8132 Classical Electrodynamics (3 units)
This course is equivalent to PHYS 5302 at Carleton University.
Course Component: Lecture

PHY 8164 Intermediate Nuclear Physics (3 units)
This course is equivalent to PHYS 5604 at Carleton University.
Course Component: Lecture

PHY 8165 Particle Physics Phenomenology (3 units)
This course is equivalent to PHYS 5601 at Carleton University.
Course Component: Lecture

PHY 8166 Advanced Topics in Particle Physics Phenomenology (3 units)
This course is equivalent to PHYS 6602 at Carleton University.
Course Component: Lecture

PHY 8172 Relativistic Quantum Mechanics (3 units)
This course is equivalent to PHYS 5702 at Carleton University.
Course Component: Lecture
PHY 8173 Quantum Electrodynamics (3 units)
This course is equivalent to PHYS 6701 at Carleton University.
Course Component: Lecture

PHY 8191 Selected Topics in Physics (3 units)
This course is equivalent to PHYS 5901 at Carleton University.
Course Component: Lecture

PHY 8260 Advanced Nuclear Physics (6 units)
Course Component: Lecture

PHY 8290 Selected Topics in Physics (MSc) (6 units)
This course is equivalent to PHYS 5900 at Carleton University.
Course Component: Lecture

PHY 8391 Selected Topics in Physics (PhD) (3 units)
This course is equivalent to PHYS 6900 at Carleton University.
Course Component: Lecture

PHY 8490 Selected Topics in Physics (PhD) (6 units)
This course is equivalent to PHYS 6900 at Carleton University.
Course Component: Lecture

PHY 9998 Examen de synthèse (Doctorat) / Comprehensive Examination (PhD)
Volet / Course Component: Recherche / Research

PHY 9999 PhD Thesis / PhD Thesis
Ce cours est équivalent à PHYS 6909 à la Carleton University. / This course is equivalent to PHYS 6909 at Carleton University.
Volet / Course Component: Recherche / Research