Summary

• Degree offered: Master of Applied Science (MASc)
• Registration status options: Full-time; Part-time
• Language of instruction: English
• Primary program: MASc in Chemical Engineering
• Collaborative specialization: Science, Society and Policy
• Program option (expected duration of the program):
 • with thesis (6 full-time terms; 24 consecutive months)
• Academic units: Faculty of Engineering (http://engineering.uottawa.ca), Department of Chemical and Biological Engineering (https://engineering.uottawa.ca/chemical), Institute for Science, Society and Policy (http://issp.uottawa.ca/en)

Program Description
The Department of Chemical and Biological Engineering located in the Faculty of Engineering offers graduate programs leading to the degrees of Master of Applied Science (MASc), Master of Engineering (MEng) and Doctor of Philosophy (PhD) in Chemical Engineering.

The main objective of the master’s programs is to refine the skills and research expertise of the students by expanding their specialized knowledge of chemical engineering primarily achieved through course work, research seminars, and technical training.

The Department is one of the participating units in the collaborative program in Science, Society and Policy.

Collaborative Program Description
The collaborative program in Science, Society and Policy allows students enrolled in one of the participating master’s programs to specialize in science and innovation policy.

The objective of the collaborative program is to provide students with the knowledge and skills needed to evaluate the challenges confronting decision-making at the interface of science and policy. Students will have an opportunity to explore how evidence is used in decision-making, how current policies shape the scientific enterprise, and how emerging technologies interact with society.

The degree awarded specifies the primary program and indicates “Specialization in Science, Society and Policy.”

Main Areas of Research
• Materials development
• Process engineering
• Clean technologies and renewable energy
• Biomedical engineering

Other Programs Offered Within the Same Discipline or in a Related Area

• Master of Applied Science Chemical Engineering (MASc)
• Master of Engineering Chemical Engineering (MEng)
• Master of Science Biology Specialization in Science, Society and Policy (Msc)
• Master of Science Chemistry Specialization in Science, Society and Policy (Msc)
• Doctorate in Philosophy Chemical Engineering (PhD)

Fees and Funding

• Program fees
 The estimated amount for university fees (https://www.uottawa.ca/university-fees) associated with this program are available under the section Finance your studies (http://www.uottawa.ca/graduate-studies/programs-admission/finance-studies).

International students enrolled in a French-language program of study may be eligible for a differential tuition fee exemption (https://www.uottawa.ca/university-fees/differential-tuition-fee-exemption).

• To learn about possibilities for financing your graduate studies, consult the Awards and financial support (https://www.uottawa.ca/graduate-studies/students/awards) section.

Notes

• Research activities can be conducted either in English, French or both, depending on the language used by the professor and the members of his or her research group.
• Programs are governed by the general regulations (http://www.uottawa.ca/graduate-studies/students/general-regulations) in effect for graduate studies.
• In accordance with the University of Ottawa regulation, students have the right to complete their assignments, examinations, research papers, and theses in French or in English.
Program Contact Information
Graduate Studies Office,
Faculty of Engineering (http://
engineering.uottawa.ca/about/
programs/graduate)
161 Louis-Pasteur, Colonel By Hall,
Room B111
Ottawa, Ontario, Canada
K1N 6N5

Tel.: 613-562-5800 x6189
Email: engineering.grad@uottawa.ca

Twitter | Faculty of Engineering
(https://twitter.com/uOttawaGenie?lang=en)
Facebook | Faculty of Engineering
(https://www.facebook.com/
 uottawa.engineering)

Twitter | Institute for Science,
Society and Policy (https://
twitter.com/issp_uottawa?lang=en)
Facebook | Institute for Science,
Society and Policy (https://
www.facebook.com/uOttawaISSP)

Admission Requirements
For the most accurate and up to date information on application
deadlines, language tests and other admission requirements, please visit
the specific requirements (http://www.uottawa.ca/graduate-studies/
programs-admission/apply/specific-requirements) webpage.

To be eligible, candidates must:
• Hold an honours bachelor’s degree with specialization or a major
 in chemical engineering (or equivalent) with a minimum average
 of 70% (B).
 Note: International candidates must check the admission
 equivalencies (https://www.uottawa.ca/graduate-studies/)
 international/study-uottawa/admission-equivalencies) for the
diploma they received in their country of origin.
• Demonstrate a good academic performance in previous studies as
 shown by official transcripts, research reports, abstracts or any other
documents demonstrating research skills.
• Pay the $100 (SCCN non-refundable) application fee.
• Identify at least one professor who is willing to supervise your
 research and thesis.
 • We recommend that you contact potential thesis supervisors as
 soon as possible.
 • To enroll, you need to have been accepted by a thesis supervisor.
 • The supervisor’s name is required at the time of application.

Language Requirements
Applicants must be able to understand and fluently speak the language
of instruction (English) in the program to which they are applying. Proof
of linguistic proficiency may be required.

Applicants whose first language is neither French nor English must
provide proof of proficiency in the language of instruction.

Language tests recognized by the University of Ottawa:
• TOEFL: 550 (paper-based) or 79-80 (internet-based); or
• IELTS: Overall 6.5 – Individual 5.0 (paper-based or internet-based); or
• An equivalent language test (http://www.uottawa.ca/graduate-
studies/programs-admission/apply/required-documents).

Note: Candidates are responsible for any fees associated with the
language tests.

Notes
• To be accepted into the collaborative program candidates must be
 admitted to one of the programs participating in the collaborative
 program.
• Students must indicate in their initial application for admission to
 the master’s program in chemical engineering that they wish to be
 accepted into a collaborative specialization in Science, Society and
 Policy.
• The Department may require students to take additional courses,
 depending on their backgrounds.
• The admission requirements listed above are minimum requirements
 and do not guarantee admission to the program.
• Admissions are governed by the general regulations (http://
 www.uottawa.ca/graduate-studies/students/general-regulations) in
effect for graduate studies.

Documents Required for Admission
In addition to the documents required (http://www.uottawa.ca/graduate-
studies/programs-admission/apply/required-documents) for graduate
and postdoctoral studies, candidates must submit the following
documents:
• A resume
• A letter of intent

Letter outlining your professional goals and proposed research
area.
Master of Applied Science Chemical Engineering Specialization in Science, Society and Policy

- Two confidential letters of recommendation from professors who have known the applicant and are familiar with their work.
 It is highly recommended that you contact your referee prior to submitting your application to confirm their email address and their availability to complete your letter of recommendation.

- Transcripts from all universities attended:
 - Official transcripts from all universities attended must be submitted (mandatory).
 This applies to all courses and programs at any university you attended, including regular programs (completed or not), exchanges, letters of permission, online or correspondence courses, courses taken as a special student or visiting student, etc.
 - If the transcript and degree certificate are not in English or French, a certified translation (signed and stamped/sealed) must be submitted.

- A collaborative program enrollment form (http://issp.uottawa.ca/en/education/SSPcollaborative)
 - The collaborative enrollment form must be signed by the student’s thesis supervisor, as consent to participate in the collaborative program.

- A 1-page cover letter (http://issp.uottawa.ca/en/education/SSPcollaborative) (500 words maximum) outlining your interest in the collaborative program and how their research topic or area aligns with the scope of inquiry at the Institute for Science, Society and Policy

Note(s)

1. Presentation and defence of a thesis on a research topic relating to science, society and policy, carried out under the supervision of a professor who is a member of the Chemical Engineering program and/or of the collaborative program. The Science, Society and Policy Graduate Committee will determine whether or not the topic of the thesis is appropriate for the designation of “Specialization in Science, Society and Policy.” At least one of the thesis advisory committee members and thesis examiners must be recommended by the Science, Society and Policy Graduate Committee.

2. Students may submit their thesis in traditional monograph format or as a series of articles prepared for publication in scholarly journals.

3. Students are responsible for ensuring they have met all of the thesis requirements (http://www.uottawa.ca/graduate-studies/students/theses).

Minimum Requirements

The passing grade in chemical engineering courses is C+.

The passing grade in ISP courses is B.

A student who has incurred two failures is withdrawn from the program.

Fast-Track from Master’s to PhD

Students enrolled in the MASc program at the University of Ottawa may be eligible to fast-track directly into the doctoral program without writing a master’s thesis. For additional information, please consult the “Admission Requirements” section of the PhD program.

Research

Research Fields & Facilities

Located in the heart of Canada’s capital, a few steps away from Parliament Hill, the University of Ottawa is among Canada’s top 10 research universities.

uOttawa focuses research strengths and efforts in four Strategic Areas of Development in Research (SADRs):

- Canada and the World
- Health
- e-Society
- Molecular and Environmental Sciences

With cutting-edge research, our graduate students, researchers and educators strongly influence national and international priorities.

Research at the Faculty of Engineering

Areas of research:

- Chemical and Biological Engineering
- Civil Engineering
- Electrical Engineering and Computer Science
- Mechanical Engineering

For more information, refer to the list of faculty members and their research fields on Uniweb.

IMPORTANT: Candidates and students looking for professors to supervise their thesis or research project can also consult the website of
the faculty or department (https://www.uottawa.ca/graduate-studies/students/academic-unit-contact-information) of their program of choice. Uniweb does not list all professors authorized to supervise research projects at the University of Ottawa.

Courses

Not all of the following courses are necessarily given each year. Attendance at courses is compulsory.

CHG 6000 Rapport en génie chimique / Chemical Engineering Report (6 crédits / 6 units)
Volet / Course Component: Recherche / Research

CHG 7999 Thèse de M.Sc.A. / M.A.Sc. Thesis
Volet / Course Component: Recherche / Research

CHG 8101S Seminar I (1 crédits / 1 units)
Oral presentation of selected topics and research papers. Attendance at all seminars is compulsory for MASc students.
Volet / Course Component: Séminaire / Seminar

CHG 8102S Seminar II (1 crédits / 1 units)
Oral presentation of selected topics and research papers. Attendance at all seminars is compulsory for PhD students.
Volet / Course Component: Séminaire / Seminar

CHG 8110 Fluid Mechanics (3 units)
Stream function, circulation and vorticity, form drag and drag coefficients, equations of motion, boundary layer theory, modern theory of turbulent motion, flow in porous media, non-Newtonian flow.
Course Component: Lecture

CHG 8115 Heat Transfer I (3 units)
The general law of heat conduction. Steady and unsteady heat conduction in solids with or without internal heat sources. Radiant heat transmission.
Course Component: Lecture

CHG 8116 Advanced Transport Phenomena (3 units)
Advanced study of momentum, heat and mass transfer relevant to chemical engineering and also to areas such as environmental engineering, medicine and other scientific disciplines. Review of the analogy between mass, momentum and thermal transport and, in particular, of the physical principles and mathematical foundations required for the analysis of fluid flow, heat transfer and mass transfer, and of the advanced methods for the analysis of transport problems. Main emphasis on formulation of a given physical problem in terms of appropriate conservation equations, and obtaining an understanding of the associated physical phenomena. Use of many chemical engineering applications to illustrate the various principles.
Course Component: Lecture

CHG 8120 Rheology and Polymer Processing (3 units)
Course Component: Lecture

CHG 8121 Synthetic Membranes in Biomedical Engineering (3 units)
Medical applications of synthetic membranes hemodialysis, oxygenation, hemofiltration, apheresis and plasma exchange, biofunctional membranes, biosensors, drug delivery systems and microencapsulation. Emphasis on the types and classes of membranes available, relationship between structure and properties of membranes, and other variables, techniques for fabricating membranes, and special issues involved in the design and manufacture of synthetic membranes for medical use.
Course Component: Lecture

CHG 8123 Chemical Engineering Thermodynamics (3 units)
Course Component: Lecture

CHG 8132 Adsorption Separation Processes (3 units)
Discussion of different microporous materials and molecular sieves as adsorbents. Adsorption equilibrium and adsorption kinetics. Equilibrium adsorption of single fluids and mixtures. Diffusion in porous media and rate processes in adsorbers. Adsorber dynamics: bed profiles and breakthrough curves. Cyclic fluid separation processes. Pressure swing adsorption. Examples of commercial separation applications. This course is equivalent to ENVJ 5105 at Carleton University.
Course Component: Lecture

CHG 8141 Special Directed Studies I (3 units)
Course Component: Lecture

CHG 8143 Special Directed Studies II (3 units)
Course Component: Lecture

CHG 8145 Special Directed Studies III (3 units)
Course Component: Research

Discrete, linear, stochastic models for dynamic processes. Univariate Time Series. Identification of transfer function models. Fitting and checking transfer function models. Design of feedforward and feedback control schemes. Applications to chemical processes. This course is equivalent to ENVJ 5500 at Carleton University.
Course Component: Lecture

CHG 8157 Strategies for Engineering Process Analysis (3 units)
Statistical experimental design and analysis techniques for industrial and laboratory investigations are presented. Topics include: the nature and analysis of process variation, comparisons of two or more processes, empirical modelling of processes, applications of factorial and fractional factorial designs, mixture designs, response surface methodologies and empirical optimization techniques.
Course Component: Lecture

CHG 8158 Porous Media (3 units)
Course Component: Lecture
CHG 8161 Chemical Reaction Engineering I (3 units)
Kinetics of chemical reactions and its application to chemical engineering problems. Rate expressions and heterogeneous kinetics. Preparation and evaluation of catalyst activity. Promoters and poisons. Physical properties and transfer of mass and energy in porous catalysts. Interpretation of kinetic data and determination of mechanisms of catalyzed reactions.
Course Component: Lecture

CHG 8175 Material Transport (3 units)
Course Component: Lecture

CHG 8181 Biochemical Engineering (3 units)
Course Component: Lecture

CHG 8186 Modelling of Steady-State Processes (3 units)
A comprehensive examination of techniques for building and analyzing process models is made. Topics include: linear least squares estimation, non-linear least squares estimation, multiresponse parameter estimation, error in variables estimation, heteroscedasticity, design of experiments for precise parameter estimation and model discrimination. This course is equivalent to ENVJ 5506 at Carleton University.
Course Component: Lecture

CHG 8187 Introduction to Polymer Reaction Engineering (3 units)
Course Component: Lecture

CHG 8188 Polymer Properties and Characterization (3 units)
Polymer properties are described and discussed in the context of their nature, source and means of measurement. Chemical and microstructural properties; physical states and transitions; thermal properties; mechanical properties and viscoelasticity models; degradation and stability; surface, electrical and optical properties, polymer additives; structure-property relationships.
Course Component: Lecture

CHG 8189 Chemical Engineering Analysis (3 units)
Treatment and interpretation of experimental data. Formulation of ordinary and partial differential equations for the solution of problems arising in chemical engineering. Emphasis will be on problems requiring numerical techniques with examples taken from fluid flow, heat transfer and mass transfer. Selection of boundary conditions.
Course Component: Lecture

CHG 8191 Selected Topics Chemical Engineering (3 units)
Discussion of recent progress in chemical engineering. This course is equivalent to ENVJ 8191 at Carleton University.
Course Component: Lecture

CHG 8192 Membrane Application in Environmental Engineering (3 units)
Course emphasizing the applications of membrane separation processes in the resolution of various environmental problems. Applications of reverse osmosis, ultrafiltration and pervaporation to the treatment of industrial waste waters. Applications of membrane gas and vapor permeation to the removal of pollutants from air. Discussion of fundamentals underlying each separation process. This course is equivalent to ENVJ 5502 at Carleton University.
Course Component: Lecture

CHG 8194 Membrane Separation Processes (3 units)
Advanced topics of membrane separations including reverse osmosis, ultrafiltration, gas separation, non-aqueous liquid separation, and membrane applications in biotechnology. The course involves problem solving in membrane transport, membrane design, and membrane process design. This course is equivalent to ENVJ 5504 at Carleton University.
Course Component: Lecture

CHG 8195 Advanced Numerical Methods in Transport Phenomena (3 units)
Survey course of numerical methods for solving linear and non-linear ordinary and partial differential equations. Techniques reviewed include Runge-Kutta and predictor-corrector methods, shooting techniques, control volume discretization methods and finite elements. Example problems from the field of transport phenomena. This course is equivalent to ENVJ 5505 at Carleton University.
Course Component: Lecture

CHG 8196 Interfacial Phenomena in Engineering (3 units)
Interfacial tension and interfacial free energy; contact angles; spreading of liquids; wetting of surfaces; experimental techniques. Interfacial tension of mixtures; Gibbs equation; absorbed and insoluble monolayers; properties of monolayers and films. Electrical phenomena at interfaces; the electrical double layer; zeta-potential; electrokinetic phenomena (electrophoresis, electro-osmosis, streaming potential); surface conductance. Dispersed systems; formation and practical uses of emulsions; spontaneous emulsification; flocculation. This course is equivalent to ENVJ 5507 at Carleton University.
Course Component: Lecture

CHG 8198 Reverse Osmosis (3 units)
Physical chemical criteria for reverse osmosis separations, membrane materials, and membrane casting techniques. Basic transport equations for single and mixed solute systems. Prediction of membrane performance. Process design, specification, and analysis applications. This course is equivalent to ENVJ 5503 at Carleton University.
Course Component: Lecture

CHG 9998 Examen de synthèse (doctorat) / Comprehensive Examination (Ph.D.)
Volet / Course Component: Recherche / Research

CHG 9999 Thèse de doctorat / Ph.D. Thesis
Volet / Course Component: Recherche / Research

ISP 5101 Decision at the Interface of Science and Policy (3 units)
This course explores a number of critical issues in the design and implementation of science (or, more generally, evidence)-based policy. Topics will include: the nature of scientific evidence; who has standing in the provisioning of scientific evidence; the science and non-science of risk assessment; ethical dimensions of policy design and implementation; the role of science in policy design and implementation; the policy making process; and science policy performance evaluation.
Course Component: Lecture
ISP 5102 Science and Technology Governance and Communication (3 units)
This course explores a number of critical issues in the governance of science and technology (S&T) in democratic societies, with particular emphasis on the Canadian context. Topics will include the following: the history of S&T governance and communication in both Canada and abroad; an overview of the Canadian S&T policy and regulatory landscape; the role of government, the private sector and civil society in S&T governance; policy and regulatory experiments in fostering innovation (and the success thereof); the evolution of public S&T communication strategies and governance of emerging technologies.

Course Component: Lecture

ISP 5103 Capstone Seminar in Science, Society and Policy (3 units)
Involves partnering with organization(s) working on an issue relating to science, society and policy. In consultation with a member of the organization, students analyze the issue and complete a written report, either singly or in interdisciplinary teams, under the direction of the seminar professor who is responsible for evaluating the report.

Course Component: Lecture

ISP 5501 Prise de décision à l’interface de la science et des politiques (3 crédits)
Ce cours approfondit un certain nombre d’enjeux critiques liés à la conception et à la mise en œuvre de politiques scientifiques (ou, de façon plus générale, fondées sur des preuves). Les sujets abordés incluent les suivants : la nature de la preuve scientifique; qui a qualité pour fournir des preuves scientifiques; le côté scientifique et le côté non scientifique de l'évaluation des risques; les dimensions éthiques de la conception et de la mise en œuvre des politiques publiques; le rôle de la science dans la conception et la mise en œuvre des politiques publiques; le processus d'élaboration des politiques publiques; et l'évaluation du rendement des politiques publiques en matière de sciences.

Volet : Cours magistral

ISP 5502 Gouvernance et communication en science et technologie (3 crédits)
Ce cours approfondit un certain nombre d’enjeux critiques liés à la gouvernance des sciences et de la technologie (S & T) dans les sociétés démocratiques et, en particulier, dans le contexte canadien. Les sujets abordés incluent les suivants : l'histoire de la gouvernance et de la communication en sciences et technologie au Canada et à l'étranger; un aperçu du paysage réglementaire et politique canadien ayant trait aux sciences et à la technologie; le rôle du gouvernement, du secteur privé et de la société civile dans la gouvernance des sciences et de la technologie; les expériences relatives aux politiques et à la réglementation menées en vue de favoriser l'innovation (et leur réussite); l'évolution des stratégies de communication publique concernant les sciences et la technologie et la gouvernance des nouvelles technologies.

Volet : Cours magistral

ISP 5503 Séminaire d'intégration en science, société et politique publique (3 crédits)
Involves partnering with organization(s) working on an issue relating to science, society and policy. In consultation with a member of the organization, students analyze the issue and complete a written report, either singly or in interdisciplinary teams, under the direction of the seminar professor who is responsible for evaluating the report.

Volet : Cours magistral