BIOMEDICAL ENGINEERING (BMG)

BMG 5001 Stage en génie clinique / Clinical Engineering Internship (6 crédits / 6 units)
Stage en génie clinique dans un établissement extérieur à l'université. Rédaction d'un rapport ayant trait aux activités menées durant l'internat. Noté S (satisfaisant) ou NS (non satisfaisant) par le superviseur et un professeur nommé par le directeur du programme. / Internship in an institutional setting outside the university. Requires a formal written paper relating to the internship activities. Graded S (Satisfactory) / NS (Not satisfactory) by the supervisor and a professor appointed by the program director. Préalable : approbation du directeur du programme. / Prerequisite: approval of the program director. Ce cours est équivalent à BIOM 5801 à la Carleton University. / This course is equivalent to BIOM 5801 at Carleton University.
Volet / Course Component: Cours magistral / Lecture
Prerequisite: approval of the program director. / Prerequisite: approval of the program director.

BMG 5103 Biomedical Instrumentation (3 units)
Instrumentation designed to measure physiological variables related to the function of the heart, lungs, kidney, nervous and musculo-skeletal systems; emergency, critical care, surgery and anesthesia equipment. This course is equivalent to BIOM 5100 at Carleton University.
Course Component: Lecture
Courses BMG 5103, ELG 6320 cannot be combined for units.

BMG 5104 Biological Signals (3 units)
Modeling of neuromuscular biological signals, including subthreshold phenomena, active behaviour of cell membranes, and innervation processes. Measurement of biological signals, including electrode effects. Time domain, frequency domain, and adaptive filtering techniques for noise reduction. This course is equivalent to BIOM 5101 at Carleton University.
Course Component: Lecture

BMG 5105 Medical Image Processing (3 units)
Mathematical models of image formation based on the image modality and tissue properties. Linear models of image degradation and reconstruction. Inverse problems, regularization for image reconstruction. Image formation in radiology, computed tomography, MRI, nuclear medicine, ultrasound, positron emission tomography, electrical impedance tomography. This course is equivalent to BIOM 5200 at Carleton University.
Course Component: Lecture
Courses BMG 5105, ELG 5376 cannot be combined for units.

BMG 5106 Introduction to Medical Imaging Principles and Technology (3 units)
Basic principles and technological implementation of x-ray, nuclear medicine, magnetic resonance imaging (MRI), and other imaging modalities used in medicine; contrast, resolution, storage requirements for digital images; applications outside medicine, future trends. This course is equivalent to BIOM 5201 at Carleton University.
Course Component: Lecture

BMG 5107 Wavelet Applications in Biomedical Image Processing (3 units)
Introduction to wavelet analysis and processing techniques for the quantification of biomedical images and signals. Topics include: multiresolution algorithms for denoising and image restoration, multiscale segmentation and classification for computer aided diagnosis and compression. This course is equivalent to BIOM 5202 at Carleton University.
Course Component: Lecture
Prerequisites: ELG 5376 and BMG 5105

BMG 5108 Advanced Topics in Biomedical Image Processing (3 units)
Recent and advanced topics in the field of biomedical image processing and its related areas. Prerequisite: permission of the program director. This course is equivalent to BIOM 5203 at Carleton University.
Course Component: Lecture

BMG 5109 Advanced Topics in Medical Instrumentation (3 units)
Recent and advanced topics in the field of medical instrumentation and its related areas. This course is equivalent to BIOM 5106 at Carleton University.
Course Component: Lecture

BMG 5110 Advanced Topics in Biomechanics and Biomaterials (3 units)
Recent and advanced topics in the field of biomechanics and biomaterials and its related areas. This course is equivalent to BIOM 5304 at Carleton University.
Course Component: Lecture

BMG 5111 Advanced Topics II Medical Informatics and Telemedicine (3 units)
Recent and advanced topics in the field of medical informatics and telemedicine and its related areas. This course is equivalent to BIOM 5403 at Carleton University.
Course Component: Lecture

BMG 5112 Introduction to Biomedical Engineering (3 units)
Research ethics and methods. Engineering systems approach to analysis and modelling of human anatomy and physiology. Introduction to topics including biomechanics, electrophysiology, and computational biology. Biomedical technologies. Impact of technology on society. This course is equivalent to BIOM 5010 at Carleton University.
Course Component: Lecture

BMG 5113 Clinical Engineering (3 units)
Overview of the Canadian health care system; brief examples from other countries; clinical engineering and the management of technologies in industrialized and in developing countries; safety, reliability, quality assurance; introduction to biomedical sensor technologies; applications of telemedicine; impact of technology on health care. This course is equivalent to BIOM 5406 at Carleton University.
Course Component: Lecture

BMG 5130 Fundamentals of Policy I: Policy Analysis (3 units)
Policy analysis and policy processes with an emphasis on the stages of the policy process, as well as the influences of institutions, ideas and interests. This course is equivalent to HLTH 5201 at Carleton University.
Course Component: Lecture
BMG 5300 Biological and Engineering Materials (3 units)
Properties of structural biological materials (bone, tendon, ligament, skin, cartilage, muscle, and blood vessels) from an engineering materials viewpoint. Selection of engineering materials as biomaterials. Introduction to biocompatibility. Histology of soft tissues. Viscoelasticity, mechanical properties and models of muscles, ligaments and tendons. This course is equivalent to BIOM 5300 at Carleton University.

Course Component: Lecture

BMG 5301 Biomechanics of Skeletal System, Motion and Tissue (3 units)
Analysis of human motion. Kinematics and kinetics of various activities. Engineering analysis and modeling techniques applied to human motion. Injury mechanics, treatment, prosthetic replacements. Fracture behaviour and healing processes. This course is equivalent to BIOM 5301 at Carleton University.

Course Component: Lecture

BMG 5302 Biofluid Mechanics (3 units)

Course Component: Lecture

BMG 5303 Ergonomics and Design (3 units)
Review of ergonomic issues encountered in engineering design, including biomechanical, physical and physiological issues. Course will present strategies for human interaction with complex systems, such as aircraft cockpits, equipment control consoles, human-robotic interactions, and tele-operated equipment. This course is equivalent to BIOM 5303 at Carleton University.

Course Component: Lecture

BMG 5304 Interactive Networked Systems and Telemedicine (3 units)
Telemanipulator; human motoring and sensory capabilities; typical interface devices; mathematical model of haptic interfaces; haptic rendering; stability and transparency; remote control schemes; time delay compensation; networking and real-time protocols, history and challenges of telemedicine; telemedicine applications: telesurgery, tele? monitoring, tele?diagnosis and tele?homecare. This course is equivalent to BIOM 5402 at Carleton University.

Course Component: Lecture

BMG 5305 Pattern Classification and Experiment Design (3 units)
Introduction to a variety of supervised and unsupervised pattern classification techniques with emphasis on correct application. Statistically rigorous experimental design and reporting of performance results. Case studies will be drawn from various fields including biomedical informatics. This course is equivalent to BIOM 5405 at Carleton University.

Course Component: Lecture

BMG 5306 Special Topics in Mechanical and Aerospace Engineering: Biomechanics (3 units)
Overview of human anatomy and physiology with emphasis on artificial organ and prosthetic device design requirements. Application of engineering principles to cells and tissues, biofluid mechanics, human body energetics, measurement techniques, mechanics of human body systems, with emphasis on the artificial heart. This course is equivalent to BIOM 5306 at Carleton University.

Course Component: Lecture

The courses BMG 5306 and MCG 5489 cannot be combined for credits.

BMG 5311 Design of Medical Devices and Implants (3 units)
Solutions to clinical problems through the use of implants and medical devices. Pathology of organ failure and bioengineering and clinical aspects of artificial organs. Examples: blood substitutes, pacemakers, ventricular assist devices, artificial hearts and heart valves. This course is equivalent to BIOM 5311 at Carleton University.

Course Component: Lecture

BMG 5312 Design of Orthopaedic Implants and Prostheses (3 units)
Anatomy of the musculo-skeletal system. Electromyography. Static and dynamic analysis of the human skeleton. Materials and manufacturing considerations for orthopaedic devices. Strength and failure theories. Implant fatigue, fracture and corrosion. This course is equivalent to BIOM 5312 at Carleton University.

Course Component: Lecture

BMG 5314 Biocontrols (3 units)
Application of traditional control system principles to the human body. Functionality of sample actuators and sensors. Characterization of human body control loops with emphasis on system stability, robustness, and effect of adverse external disturbance. Course project. This course is equivalent to BIOM 5314 at Carleton University.

Course Component: Lecture

Prerequisite: knowledge of basic control system analyses and design concepts using root locus and frequency response methods.

BMG 5315 Biorobotics (3 units)
Interpretation of physical laws as applied to human motion; kinematics and dynamics of humanoid robots, modeling of biological sensors and actuators, artificial muscles, tele-manipulation, dual arm robots, robot-assisted surgery, and multi-fingered end-effectors. Approaches to design of mechatronic devices to support and enhance human movement including rehabilitators, extenders, haptic devices, and minimally invasive surgery systems. This course is equivalent to BIOM 5315 at Carleton University.

Course Component: Lecture

BMG 5316 Biotransport Processes (3 units)
Application of chemical engineering principles to medicine and biology. Principles of mass transfer and fluid dynamics in topics such as hemodialysis, artificial kidney, diffusion in blood, mass transfer in the eye, drug distribution in the body, and advanced life support system. This course is equivalent to BIOM 5316 at Carleton University.

Course Component: Lecture

Prerequisite: Knowledge of integral and differential forms of mass, momentum, energy laws and fluid properties.

BMG 5317 Medical Computing (3 units)
Introduction to information technology research used in the medically related fields such as biotechnology, cancer treatment, and biometric. Topics may include: medical imaging, telemedicine, telesurgery, DNA analysis, and medical information systems. This course is equivalent to BIOM 5400 at Carleton University.

Course Component: Lecture

BMG 5318 Advanced Health Care Engineering (3 units)
Health care and technology; overview of medical devices and sensors; safe and effective use and management of technology; telemedicine; medical databases, data collection, storage, retrieval and computers in medicine; electronic patient records, PACS (picture archiving and communication systems); clinical decision-support systems. This course is equivalent to BIOM 5401 at Carleton University.

Course Component: Lecture

Courses BMG 5318, ELG 5123 and ELG 6130 cannot be combined for units.
BMG 5319 Introduction to Microfluidics (3 units)
Physics of liquid transport in micro-fabricated systems including physics
at the microscale, hydrodynamics of microfluidic systems, diffusion
mixing, introduction to microfabrication, examples of microfluidics
devices and Micro PIV techniques, project.

Course Component: Lecture

BMG 5323 Rehabilitation Engineering (3 units)
Multidisciplinary approach to assistive-device design. Biomechanics
applied to rehabilitation. Gait, neurological disorders, pathological
gait, prosthetics, orthotics, seating, and mobility. Transducers, bio-
instrumentation, EMG, FES. Augmentive communication and sensory
aids. Human-assistive device interfaces, human-robot interfaces,
computer-vision-guided rehabilitation aids, telerehabilitation. Current
practice and research on new technologies. This course is equivalent to
Biomedicine at Carleton University.

Course Component: Lecture

BMG 5330 Electromagnetic Fields and Biological Systems (3 units)
Review of electromagnetic waves at radio and microwave frequencies.
Electrical and magnetic properties of tissue. Impact of electromagnetic
waves on tissue. Cellular effects. This course is equivalent to BIOM 5330
at Carleton University.

Course Component: Lecture
Prerequisite: knowledge of electromagnetic theory.

BMG 5501 Étude technique et modélisation de l'anatomie et de la
physiologie du corps humain (3 crédits)
Méthodes de systèmes d'ingénierie pour analyser et modeler les
systèmes anatomiques et physiologiques du corps humain. Propriétés
mécaniques et électriques des tissus. Systèmes musculosquelettiques,
cardiovasculaires et pulmonaires. Ce cours est équivalent à BIOM 5001 à
la Carleton University.

Volet : Cours magistral

BMG 5502 Éthiques, normes et méthodes de recherche (3 crédits)
Théories éthiques, prise de décision, codes de déontologie;
expérimentation sur des animaux et des êtres humains, consentement,
comités de déontologie; méthodes de recherche et règlements
concernant la conception, la fabrication et la certification d’appareils
médicaux; collecte, contrôle et analyse des données, y compris la
protection de la confidentialité, dilemmes bioéthiques, effets (sociaux,
politiques, financiers) de la technologie et de la recherche. Les cours ELG
7514/EACJ 5300, BMG 5502 ne peuvent être combinés pour l'obtention
de crédits. Ce cours est équivalent à BIOM 5002 à la Carleton University.

Volet : Cours magistral

BMG 5319 Projet en génie clinique / Clinical Engineering Project (6
crédits / 6 units)
Projet en génie clinique supervisé par un professeur du programme
et un ingénieur clinique. Rédaction et présentation orale d'un rapport
approfondi. Noté S (satisfaisant) ou NS (non satisfaisant) par les
superviseurs du projet et un autre professeur nommé par le directeur du
programme. Le projet peut normalement être complété dans une session
d'études à temps complet. Ce court est équivalent à BIOM 5901 à la
Carleton University. / Project in clinical engineering supervised by a
professor in the program and a clinical engineer. Requires an in-depth
report that must be presented orally. Graded S (Satisfactory) or NS (Not
satisfactory) by the co-supervisors and by another professor appointed
by the program director. The project can normally be completed in one
session of full-time study. This course is equivalent to BIOM 5901 at
Carleton University.

Volet / Course Component: Cours magistral / Lecture

BMG 6001 Projet en génie biomédicale / Biomedical Engineering Project (6
crédits / 6 units)
Projet en génie biomédicale supervisé par un professeur approuvé par le
directeur du programme. Rédaction d'un rapport approfondi, qui doit être
présenté oralement. Noté S (satisfaisant) ou NS (non satisfaisant) par le
superviseur du projet et un autre professeur nommé par le directeur du
programme. Le projet peut normalement être complété en une session
d'études à temps complet. Ce cours est équivalent à BIOM 5900 à la
Carleton University. / Project in biomedical engineering supervised by
a professor approved by the program director. Requires an in-depth
report that must be presented orally. Graded S (Satisfactory) or NS (Not
satisfactory) by the supervisor and by another professor appointed by the
program director. The project can normally be completed in one session
of full-time study. This course is equivalent to BIOM 5900 at Carleton
University.

Volet / Course Component: Cours magistral / Lecture

BMG 6001 Séminaire de doctorat en génie biomédicale / Biomedical Engineering
Seminar
Cours composé d'enseignements présentés par des étudiants de
deuxième cycle et des chercheurs en génie biomédical. En plus d'avoir à
animer un séminaire, tous les étudiants doivent assister à au moins dix
séances. Ce cours est équivalent à BIOM 5800 à la Carleton University. / This
course is in the form of seminars presented by graduate students and
other researchers in the area of Biomedical Engineering. To complete
this course, a student must attend at least ten seminars and make
one presentation in the context of this seminar series. This course is
équivalent à BIOM 5800 à Carleton University.

Volet / Course Component: Cours magistral / Lecture

BMG 7199 Directed Studies in Biomedical Engineering (3 units)
Various possibilities exist for pursuing directed studies on topics
approved by a course supervisor, including the above-listed course topics
where they are not offered on a formal basis. This course is equivalent to
BIOM 5906 at Carleton University.

Course Component: Research

BMG 7999 Thèse de maîtrise / Master's Thesis
Ce cours est équivalent à BIOM 5909 à la Carleton University. / This
course is equivalent to BIOM 5909 at Carleton University.

Volet / Course Component: Recherche / Research

BMG 9901 Séminaire de doctorat en génie biomédicale / Biomedical
Engineering PhD Seminar
Une série de séminaires présentés par des étudiants aux cycles
supérieurs et des chercheurs invités. En plus d'avoir à présenter deux
séminaires, les étudiants doivent assister et participer à au moins 20
séminaires. Noté S (satisfaisant) ou NS (non satisfaisant) / This course
is in the form of seminars presented by graduate students and other
researchers in the area of Biomedical Engineering. To complete
this course, a Student must attend at least 20 seminars and make two
presentations in the context of this seminar series.

Volet / Course Component: Séminaire / Seminar

BMG 9997 Examen de synthèse / PhD Comprehensive Exam
Inscription requise de tous les candidats au doctorat jusqu'à la réussite à
l'examen de synthèse. / Registration required for all PhD candidates until
the comprehensive examination is passed.

Volet / Course Component: Recherche / Research
BMG 9998 Rapport et soutenance du projet de thèse / Report and Defence of Thesis Proposal
À la suite de la réussite à l'examen de synthèse, inscription requise de tous les candidats au doctorat jusqu'à ce que le projet de thèse soit accepté par le Comité consultatif. / Following completion of the comprehensive examination, registration required for all PhD candidates until the thesis proposal is accepted by the Advisory Committee.
Volet / Course Component: Recherche / Research

BMG 9999 Thèse de doctorat / Doctoral Thesis
Thèse de doctorat / Doctoral Thesis
Volet / Course Component: Recherche / Research